تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,020 |
تعداد مشاهده مقاله | 125,495,897 |
تعداد دریافت فایل اصل مقاله | 98,757,842 |
طراحی و ارائه مدل پویای امنیت آب مبتنی بر تعاملات نظام اجتماعی – اکولوژیک (حوزه آبخیز دشت نیشابور) | ||
تحقیقات اقتصاد و توسعه کشاورزی ایران | ||
دوره 55، شماره 2، تیر 1403، صفحه 183-204 اصل مقاله (1.71 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijaedr.2023.350655.669188 | ||
نویسندگان | ||
مریم یزدان پرست1؛ مهدی قربانی* 2 | ||
1موسسه کسب و کار اجتماعی، دانشگاه تهران، تهران، ایران | ||
2گروه احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
در پژوهش حاضر با استفاده از پویایی سیستم (SD) و مدلسازی عامل محور (ABM) که دو روش رایج برای بررسی سیستمهای پیچیده هستند، مدل پویای امنیت آب برای حوزه آبخیز دشت نیشابور با استفاده از نرم افزار عامل محور NetLogo با هدف شناسایی و تحلیل تاثیر بخشهای مختلف مصرف آب بر وضعیت امنیت آب در حوزه طراحی و ارائه گردید. نتایج نشاندهنده مؤثر بودن و قابل اعتماد بودن مدل امنیت آب ارائه شده در پژوهش حاضر میباشد. لذا میتوان از آن برای پیشبینی وضعیت امنیت آب سالهای آینده در حوزه آبخیز دشت نیشابور استفاده نمود و ضمن در نظر گرفتن سناریوهای مختلف به منظور تغییر در پارامترهای قابل تغییر مدل و مشاهده تاثیر تغییر در هریک از آنها بر وضعیت امنیت آب در حوزه، میتوان بهترین سناریو و در راستای آن بهترین راهکار برای بهبود امنیت آب در حوزه آبخیز دشت نیشابور را نیز تعیین نمود. | ||
کلیدواژهها | ||
امنیت آب؛ پویایی سیستم؛ سیستمهای پیچیده؛ مدلسازی عامل محور؛ نت لوگو | ||
مراجع | ||
Ahmad, S., Simonovic, S.P., 2004. Spatial system dynamics: new approach for simulation of water resources systems. J. Comput. Civ. Eng. 18 (4), 331–340. https://doi.org/ 10.1061/(ASCE)0887-3801(2004)18:4(331). Ahmad, S.S., Simonovic, S.P., 2015. System dynamics and hydrodynamic modelling approaches for spatial and temporal analysis of flood risk. Int. J. River Basin Manag. 13 (4), 443–461. https://doi.org/10.1080/15715124.2015.1016954. Ahmad, S.; Tahar, R.M.; Muhammad-Sukki, F.; Munir, A.B.; Rahim, R.A. (2016). Application of system dynamics approach in electricity sector modelling: A review. Renew. Sustain. Energy Rev. 56, 29–37. Baldassarre, G.D., Sivapalan, M., Rusca, M., Cudennec, C., Garcia, M., Kreibich, H., Konar, M., Mondino, E., Mård, J., Pande, S., Sanderson, M.R., Tian, F., Viglione, A., Wei, J., Wei, Y., Yu, D.J., Srinivasan, V., Blöschl, G. (2019). Sociohydrology: Scientific Challenges in Addressingthe Sustainable Development Goals. Water Resources Research, 55, 6327–6355. Bassi, A.M., Tan, Z., Goss, S., 2010. An integrated assessment of investments towards global water sustainability. Water 2 (4), 726–741. Bertone, E., Sahin, O., Richards, R., Roiko, A., 2019. Assessing the impacts of extreme weather events on potable water quality: the value to managers of a highly participatory, integrated modelling approach. H2Open J. 2 (1), 9–24. https:// doi.org/10.2166/h2oj.2019.024. Davies, E.G., Simonovic, S.P., 2011. Global water resources modeling with an integrated model of the social–economic–environmental system. Adv. Water Resour. 34 (6), 684–700. Ding, Z.; Yi, G.; Tam, V.W.Y.; Huang, T. A system dynamics-based environmental performance simulation of construction waste reduction management in China. Waste Manag. 2016, 51, 130–141. Ding Z, Gong W, Li S, Wu Z. System Dynamics versus Agent-Based Modeling: A Review of Complexity Simulation in Construction Waste Management. Sustainability. 2018; 10(7):2484. https://doi.org/10.3390/su10072484 Epstein, J.M. (2008). Why model? Journal of Artificial Societies and Social Simulation, 11(4), 12. Fernلndez, J.M., Selma, M.A.E., 2004. The dynamics of water scarcity on irrigated landscapes: Mazarrَn and Aguilas in south-eastern Spain. Syst. Dyn. Rev 20 (2), 117–137. Forrester, J.W. System dynamics, systems thinking, and soft, O.R. Syst. Dyn. Rev. 1994, 10, 245–256. Gain, A. K., Giupponi, C., & Wada, Y. (2016). Measuring global water security towards sustainable development goals. Environmental Research Letters, 11(12), 124015. Ghorbani, M. (2018). Water Governance in the Face of Global Change. University of Tehran press. 330 p. (In Persian) Gleick, P. 2003. Global freshwater resources: Soft-path Solutions for the 21st Century. Science, 302: 1524-1528. Gober, P., & Wheater, H. S. (2014). Socio-hydrology and the science–policy interface: a case study of the Saskatchewan River basin. Hydrology and Earth System Sciences, 18(4), 1413-1422. Gohari, A., Mirchi, A., Madani, K., 2017. System dynamics evaluation of climate change adaptation strategies for water resources management in Central Iran. Water Resour. Manag. 31 (5), 1413–1434. https://doi.org/10.1007/s11269-017-1575-z. Han, M.X., 2010. Research of industrial pollutant emission reduction potential inLiao River Basin. China Popul. Resour. Environ. 20 (8), 75–79. Han, T., Zhang, C., Sun, Y., Hu, X. 2017. Study on environment-economy-society relationship model of Liaohe River Basin based on multi-agent simulation, Ecological Modelling, 359: 135-145, https://doi.org/10.1016/j.ecolmodel.2017.02.016. Kotir, J., Smith, C., Brown, G., Marshall, N., Johnstone, R. (2016). A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana, Science of The Total Environment; 573, 444-457,https://doi.org/10.1016/j.scitotenv.2016.08.081. Kriegler, E., O’Neill, B.C., Hallegatte, S., Kram, T., Lempert, R.J., Moss, R.H., Wilbanks, T. 2012. The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socio-economic pathways. Glob. Environ. Change 22: 807–822. Li, R.H., Guo, P., Li, J.B., 2018. Regional water use structure optimization under multiple uncertainties based on water resources vulnerability analysis. Water Resour. Manag. 32 (5), 1827–1847. https://doi.org/10.1007/s11269-018-1906-8. Majedul Islam, M.M., Shahid Iqbal, M., Leemans, R., Hofstra., N. 2018. Modelling the impact of future socio-economic and climate change scenarios on river microbial water quality. International Journal of Hygiene and Environmental Health. 221: 283-292. Moussavi, H. (2018). The Role of Social Capital in increasing of Local Stakeholders’ Adaptive Capacity Faced with Groundwater Level Decrease. M.Sc. Thesis., University of Tehran (In Persian) Nasirzadeh, F.; Khanzadi, M.; Mir, M. A hybrid simulation framework for modelling construction projects using agent-based modelling and system dynamics: an application to model construction workers’ safety behavior. Int. Journal of Constr. Manag. 2018, 18, 132–143. Nikoli´c, I. Co-Evolutionary Method for Modelling Large Scale Socio-Technical Systems Evolution. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands, 2010. Pahl-Wostl, C. 2007. The implications of complexity for integrated resource management. Journal of Environmental Modelling & Software, 22, 561_569. Ravar, Z., Zahraie, B., Sharifinejad, A., Hamid Gozini, Samannaz Jafari. 2020. System dynamics modeling for assessment of water–food–energy resources security and nexus in Gavkhuni basin in Iran, Journal of Ecological Indicators, Volume 108. https://doi.org/10.1016/j.ecolind.2019.105682. Sadoddin, A., Shahabi, M., & Bai, M. (2017). Integrated Watershed Assessment and Management Principles Approaches for Modeling and Decision Making. Gorgan University of Agriculture Sciences and Natural resources. 170 p. (In Persian) Scholl, H.J. Agent Based and System Dynamics Modeling: A Call for Cross Study and Joint Research. In Proceedings of the 34th Annual Hawaii International Conference on System Sciences (HICSS-34: IEEE Computer Society), Maui, HI, USA, 6 January 2001; pp. 3003–3010. Zare, F., Elsawah, S., Bagheri, A., Nabavi, E., Jakeman, A.J. (2019). Improved integrated water resource modelling by combining DPSIR and system dynamics conceptual modelling techniques. Journal of Environmental Management, 246: 27-41. https://doi.org/10.1016/j.jenvman.2019.05.033. Xi, X., Poh, K.L., 2015. A novel integrated decision support tool for sustainable water resources management in Singapore: synergies between system dynamics and analytic hierarchy process. Water Resour. Manag. 29 (4), 1329–1350. https:// doi.org/10.1007/s11269-014-0876-8. Xu, Z., Yao, L., Chen, X., 2020. Urban water supply system optimization and planning: Biobjective optimization and system dynamics methods. Comput. Ind. Eng. 142 https:// doi.org/10.1016/j.cie.2020.106373. Yazdanparast, M., Ghorbani, M., Salajegheh, A., & Kerachian, R. (2022 a). Analysis and Assessment of Water Security Index (WSI) in Neyshabour Plain Watershed. Journal of Rural Research, doi: 10.22059/jrur.2022.340867.1730 (In Persian) Yazdanparast M, Ghorbani M, Salajeghe A, Kerachian R. (2022 b). Analysis of Water Security Concept in Neyshabour Plain Watershed by Using Human-Environment System (HES) Interaction Framework. Journal of Rainwater Catchment Systems. 10 (1) :13-26 Yazdanparast, M., Ghorbani, M., Salajegheh, A. Kerachian, R. (2023) Development of a Water Security Conceptual Model by Combining Human-Environmental System (HES) and System Dynamic Approach. Water Resour Manage. https://doi.org/10.1007/s11269-023-03449-5. | ||
آمار تعداد مشاهده مقاله: 377 تعداد دریافت فایل اصل مقاله: 321 |