تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,124,429 |
تعداد دریافت فایل اصل مقاله | 97,232,966 |
Experimental Investigation of Pb Release Characteristics in Zn-Pb Mine Tailings under Simulated Leaching Conditions, Anguran, Iran | ||
Pollution | ||
دوره 9، شماره 3، مهر 2023، صفحه 870-889 اصل مقاله (921.66 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2023.351120.1685 | ||
نویسندگان | ||
Ahmad Akhavan* ؛ Ahmad Golchin | ||
Soil Science Department, Faculty of Agriculture, University of Zanjan, P.O.Box 38791-45371, Zanjan, Iran | ||
چکیده | ||
The aim of this research was to use a variety of leaching methods to see how different parameters affected the amount of lead leaching from tailings. Synthetic precipitation leaching procedure, toxicity characteristic leaching procedure, leachate extraction procedure, and field leach test protocols were utilized to assess the toxicity of the tailings. The impact of the liquid-solid ratio, particle size, contact time, and pH on lead release from tailings was also investigated. According to the findings, pH entirely effects on the release of lead from the tailings, and amphoteric leaching behavior was observed. The tailings were classified as hazardous material as a result of the TCLP leaching protocol's findings. S1 and S2 samples had lead mobility indexes of 51% and 5.6%, respectively. The solubility process influenced the discharge of lead from the tailings. In the particle size ranges of 0.3-0.5 mm and 0.6-1.0 mm, respectively, the maximum amount of lead was released from S1 and S2 samples. Various experiments have shown that the interaction between different factors will have complex and strong effects on the leaching process. To that end, managing of tailings and preventing lead emission into the environment necessitates a unique technique. Leachability is affected by a number of factors and often multiple factors can produce synergistically different releases than would be predicted by each factor alone. However, validation of the leaching approaches to field-collected and monitored cases indicates that combined effects are either captured by the test data or can be considered through fate and transport modeling. | ||
کلیدواژهها | ||
Pollution؛ Leachability؛ Perspective؛ Assessment ramework؛ Release behavior | ||
مراجع | ||
Akhavan, A. & Golchin, A. (2020). Acid production potential of zn-pb mine tailings & its effect on heavy metal concentration. Journal of Human & Environment., 4(1); 47-60. Al-Jabri, K. Taha, R. Al-Hashmi, A. & Al-Harthy, A. (2006). Effect of copper slag & cement by-pass dust addition on mechanical properties of concrete. Construction & Building Materials., 20; 322-331. Boyer, R. (1990). The regulation school: a critical introduction, Columbia University Press. Bożym, M. (2018). The study of heavy metals leaching from waste foundry sands using a one-step extraction. E3S Web of Conferences, 2017. EDP Sciences. Cappuyns, V. Swennen, R. & Deckers, J. A. (2003). Patterns of metal release in aged & recent dredged sediments during pHstat leaching. Communications in agricultural & applied biological sciences., 68; 71-74. Chand, P. Kumar, A. Gaur, A. & Mahna, S. (2009). Elemental analysis of ash using X-ray fluorescence technique. Asian journal of chemistry., 21(10); 220-224. Chandler, A. J. Eighmy, T. T. Hjelmar, O. Kosson, D. Sawell, S. Vehlow, J. Van Der Sloot, H. & Hartlen, J. (1997). Municipal solid waste incinerator residues, Elsevier. Colombani, N. Mastrocicco, M. Di Giuseppe, D. Faccini, B. & Coltorti, M. (2015). Batch & column experiments on nutrient leaching in soils amended with Italian natural zeolitites. Catena., 127; 64-71. Çoruh, S. Elevli, S. Ergun, O. N. & Demir, G. (2013). Assessment of leaching characteristics of heavy metals from industrial leach waste. International Journal of Mineral Processing., 123; 165-171. Cote, P. & Constable, T. (1982). Evaluation of experimental conditions in batch leaching procedures. Resources & conservation., 9; 59-73. Daliran, F. Pride, K. Walther, J. Berner, Z. A. & Bakker, R. J. (2013). The Angouran Zn (Pb) deposit, NW Iran: evidence for a two stage, hypogene zinc sulfide–zinc carbonate mineralization. Ore Geology Reviews., 53, pp; 373-402 El-Kamash, A. Zaki, A. & El Geleel, M. A. (2005). Modeling batch kinetics & thermodynamics of zinc & cadmium ions removal from waste solutions using synthetic zeolite A. Journal of Hazardous Materials., 127; 211-220. EPA, U. (2004). Characteristics Introduction & Regulatory Definitions, Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (SW 846). US Environmental Protection Agency. Falagán, C. Grail, B. M. & Johnson, D. B. (2017). New approaches for extracting & recovering metals from mine tailings. Minerals Engineering., 106; 71-78. Fernández-Olmo, I. Lasa, C. Lavín, M. A. & Irabien, A. (2009). Modeling of amphoteric heavy metals solubility in stabilized/solidified steel foundry dust. Environmental Engineering Science., 26; 251-262. Grathwohl, P. & Susset, B. (2009). Comparison of percolation to batch & sequential leaching tests: theory & data. Waste Management., 29; 2681-2688. Grathwohl, P. & Van Der Sloot, H. (2007). Groundwater risk assessment at contaminated sites (GRACOS): Test Methods & Modelling Approaches. Groundwater Science & Policy. Guyonnet, D. (2010). Comparison of percolation to batch & sequential leaching tests: Theory & data. Waste management., 30; 1746-1747. Guo, Z. Q. Lai, Y. M., Jin, J. F. Zho, J. R., Sun, Z. & Zhao, K. (2020). Effect of Particle Size & Solution Leaching on Water Retention Behavior of Ion-Absorbed Rare Earth. Geofluids. Hageman, P. L. (2007). US Geological Survey field leach test for assessing water reactivity & leaching potential of mine wastes, soils, & other geologic & environmental materials. No. 5- D3. Hageman, P. L. & Briggs, P. H. (2000). A simple field leach test for rapid screening & qualitative characterization of mine waste dump material on abandoned mine lands, US Department of the Interior, US Geological Survey. No. 2000-15 Houben, D. Evrard, L. & Sonnet, P. (2013). Mobility, bioavailability & pH-dependent leaching of cadmium, zinc & lead in a contaminated soil amended with biochar. Chemosphere., 92; 1450-1457. Hudson-Edwards, K. A. & Dold, B. (2015). Mine waste characterization, management & remediation. Multidisciplinary Digital Publishing Institute. Hudson, C. (2001). The role of international environmental law in the protection of the Danube river basin: the Baia Mare cyanide spill. Colo. J. Int’l Envtl. L. & Pol’y., 12; 367. Islam, M. S. Ahmed, M. K. Raknuzzaman, M. Habibullah-Al-Mamun, M. & Masunaga, S. (2015). Metal speciation in sediment & their bioaccumulation in fish species of three urban rivers in Bangladesh. Archives of environmental contamination & toxicology., 68; 92-106. Jaishankar, M. Tseten, T. Anbalagan, N. Mathew, B. B. & Beeregowda, K. N. (2014). Toxicity, mechanism & health effects of some heavy metals. Interdisciplinary toxicology., 7; 60-72. Janusa, M. A. Bourgeois, J. C. Heard, G. E. Kliebert, N. M. & Landry, A. A. (1998). Effects of particle size & contact time on the reliability of toxicity characteristic leaching procedure for solidified/stabilized waste. Microchemical Journal., 59; 326-332. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B.B. & Beeregowda, K.N., 2014. Toxicity, mechanism & health effects of some heavy metals. Interdisciplinary toxicology., 7(2); p.60. Jones, J. M. & Hao, J. (1993). Sequential extraction method: a review & evaluation. Environmental geochemistry & health., 15(2-3); p.185. Kabala, C. & Singh, B. R. (2001). Fractionation & mobility of copper, lead, & zinc in soil profiles in the vicinity of a copper smelter. Journal of Environmental Quality., 30; 485-492. Karaca, O. Cameselle, C. & Reddy, K. R. (2016). Characterization of heavy metals in mine tailings & lake sediments: implications on remediation. Geo-Chicago, pp 12-21. Karbassi, A. & Shankar, R. (2005). Geochemistry of two sediment cores from the west coast of India. International Journal of Environmental Science & Technology., 1; 307-316. Karius, V. & Hamer, K. (2001). pH & grain-size variation in leaching tests with bricks made of harbour sediments compared to commercial bricks. Science of the total environment., 278; 73-85. Khan, U. A. Kujala, K. Nieminen, S. P. Räisänen, M. L. & Ronkanen, A.-K. (2019). Arsenic, antimony, & nickel leaching from northern peatlands treating mining influenced water in cold climate. Science of the Total Environment., 657; 1161-1172. Kirby, C. S. & Rimstidt, J. D. 1994. Interaction of municipal solid waste ash with water. Environmental science & technology., 28; 443-451. Kovács, e. Omanović, d. Pižeta, i. Bilinski, h. Frančišković-Bilinski, s. & Tamás, j. (2013). Chemical water quality changes along a stream at an abandoned pb-zn mining site. European Chemical Bulletin., 2(1); 11-14. Kogbara, R. B. (2011). Process envelopes for & biodegradation within stabilised/solidified contaminated soils. University of Cambridge. Król, A., Mizerna, K. & Bożym, M. (2020). An assessment of pH-dependent release & mobility of heavy metals from metallurgical slag. Journal of hazardous materials., 384; 121502. Lei, M. Zhang, Y. Khan, S. Qin, P.-F. & Liao, B. H. (2010). Pollution, fractionation, & mobility of Pb, Cd, Cu, & Zn in garden & paddy soils from a Pb/Zn mining area. Environmental monitoring & assessment., 168; 215-222. Li, F. & Chen, M. (2017). Copper recovery from waste printed circuit boards & the correlation of Cu, Pb, Zn by ionic liquid. Environment Protection Engineering, 43. Liang, S.-X. Wang, X. Li, Z. Gao, N. & Sun, H. (2014). Fractionation of heavy metals in contaminated soils surrounding non-ferrous metals smelting area in the North China Plain. Chemical Speciation & Bioavailability., 26; 59-64. Liu, B. Peng, T. Sun, H. & Yue, H. (2017). Release behavior of uranium in uranium mill tailings under environmental conditions. Journal of Environmental Radioactivity., 171; 160-168. Liu, Y. Qi, T. Chu, J. Tong, Q. & Zhang, Y. (2006). Decomposition of ilmenite by concentrated KOH solution under atmospheric pressure. International Journal of Mineral Processing., 81; 79-84. Lottermoser, B. (2010). Mine wastes: characterization, treatment & environmental impacts.,(Springer Verlag: Berlin). Ma, J. Lei, M. Weng, L. Li, Y. Chen, Y. Islam, M. S. Zhao, J. & Chen, T. (2019). Fractions & colloidal distribution of arsenic associated with iron oxide minerals in lead-zinc mine-contaminated soils: Comparison of tailings & smelter pollution. Chemosphere., 227; 614-623. Mendez, M. O. & Maier, R. M. (2007). Phytostabilization of mine tailings in arid & semiarid environments—an emerging remediation technology. Environmental health perspectives., 116; 278-283. Montanaro, L. Bianchini, N. Rincon, J. M. & Romero, M. (2001). Sintering behaviour of pressed red mud wastes from zinc hydrometallurgy. Ceramics international., 27; 29-37. Moors, E. H. & Dijkema, G. P. (2006). Embedded industrial production systems: lessons from waste management in zinc production. Technological Forecasting & Social Change., 73; 250-265. Nemati, K. Bakar, N. K. A. Abas, M. R. & Sobhanzadeh, E. (2011). Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia. Journal of hazardous materials., 192; 402-410. Nurcholis, M. Yudiantoro, D. F. Haryanto, D. & Mirzam, A. (2017). Heavy metals distribution in the artisanal gold mining area in Wonogiri. Indonesian Journal of Geography., 49; 133-144. Omanović, D., Pižeta, I., Vukosav, P., Kovács, E., Frančišković-Bilinski, S. & Tamás, J., 2015. Assessing element distribution & speciation in a stream at abandoned Pb–Zn mining site by combining classical, in-situ DGT & modelling approaches. Science of The Total Environment., 511; 423-434. Olajire, A. Ayodele, E. Oyedirdan, G. & Oluyemi, E. (2003). Levels & speciation of heavy metals in soils of industrial southern Nigeria. Environmental Monitoring & Assessment., 85; 135-155. Olobatoke, R. & Mathuthu, M. (2016). Heavy metal concentration in soil in the tailing dam vicinity of an old gold mine in Johannesburg, South Africa. Canadian journal of soil science., 96; 299-304. Organization, W. H. (2008). Guidelines for drinking-water quality: second addendum. Vol. 1, Recommendations, World Health Organization. Peng, C. Tang, L. Tan, X. Li, Y. Wang, X. Ai, X. Zhou, X. Thunders, M. & Qiu, J. (2017). Heavy metal fractionation after application of fermented sludge to soil & its effect on sedum lineare. Fresenius Environmental Bulletin., 26; 810-822. Raskin, I. & Ensley, B. D. (2000). Phytoremediation of toxic metals, John Wiley & Sons. Restituta Paul, M. Pancras Mugishagwe Syldion, B. & William John Senkondo, M. (2018). Leaching Behaviour & Speciation of Pb, Zn & Cu in Stabilized Gold Mine Tailings International Journal of Environmental Monitoring & Protection., 5; 11-17. Roussel, C. Bril, H. & Fernandez, A. (2000). Arsenic speciation: involvement in evaluation of environmental impact caused by mine wastes. Journal of Environmental Quality., 29; 182-188. Saleem, M., Iqbal, J. Akhter, G. & Shah, M. H. (2018). Fractionation, bioavailability, contamination & environmental risk of heavy metals in the sediments from a freshwater reservoir, Pakistan. Journal of Geochemical Exploration., 184; 199-208. Schreck, E. Bonnard, R. Laplanche, C. Leveque, T. Foucault, Y. & Dumat, C. (2012). DECA: a new model for assessing the foliar uptake of atmospheric lead by vegetation, using Lactuca sativa as an example. Journal of environmental management., 112; 233-239. Schultz, M. K., Burnett, W. C. & Inn, K. G. (1998). Evaluation of a sequential extraction method for determining actinide fractionation in soils & sediments. Journal of Environmental Radioactivity., 40; 155-174. Sharafi, A., Beigi, H., Rezaei, B. & Sargheini, J., 2020. The spatial modeling of hazardous elements in one of the Angouran mine waste dumps using a geostatistical approach. Iranian Journal of Mining Engineering., 15(46); 41-49. Sims, K. W. Gill, J. B. Dosseto, A. Hoffmann, D. L. Lundstrom, C. C. Williams, R. W. Ball, L. Tollstrup, D. Turner, S. & Prytulak, J. (2008). An inter‐laboratory assessment of the thorium isotopic composition of synthetic & rock reference materials. Geostandards & Geoanalytical Research., 32; 65-91. Spears, D. A. Sharp, J. H. Thompson, D. & Argent, B. B. (1995). December. Prediction of the phases present in fly ash, their composition & the influence of these factors on its utility & disposal. In Proceedings of The Institute of Energy Conference, pp. 71-87. Sposito, G. L. J. L. & A. C. Chan. (1982). Trace Metal Chemistry in Arid-zone Field Soils Amended with Sewage Sludge: I. Fractionation of Ni, Cu, Zn, Cd, & Pb in Solid Phases. Soil Science Society of America Journal., 46; 260-264. Sundaray, S. K. Nayak, B. B. Lin, S. & Bhatta, D. (2011). Geochemical speciation & risk assessment of heavy metals in the river estuarine sediments—a case study: Mahanadi basin, India. Journal of hazardous materials., 186; 1837-1846. Tessier, A. Campbell, P. G. & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical chemistry., 51; 844-851. USEPA. (1992). Method 1311: toxicity characteristic leaching procedure. In: EPA SW846: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods USEPA. (1994). Synthetic Precipitation Leaching Procedure. US Environmental Protection Agency, Method 1312, Test Methods for Evaluating Solid Waste Physical/Chemical Methods, (SW-846), 30 pp. Uugwanga, M. N. & Kgabi, N. A. (2020). Assessment of metals pollution in sediments & tailings of Klein Aub & Oamites mine sites, Namibia. Environmental Advances, 2, 100006. Van Der Sloot, H. Kosson, D. & Hjelmar, O. (2001). Characteristics, treatment & utilization of residues from municipal waste incineration. Waste Management., 21; 753-765. Van Herck, P. Van Der Bruggen, B. Vogels, G. & Vandecasteele, C. (2000). Application of computer modelling to predict the leaching behaviour of heavy metals from MSWI fly ash & comparison with a sequential extraction method. Waste Management., 20; 203-210. Vodyanitskii, Y. N. (2016). St&ards for the contents of heavy metals in soils of some states. Annals of Agrarian Science., 14; 257-263. Wani, A. Ara A. & Usmani Ja. (2015). Lead toxicity: a review. Interdisciplinary toxicology, 8, 55. Yang, H. Liu, J. & Yang, J. (2011). Leaching copper from shredded particles of waste printed circuit boards. Journal of hazardous materials., 187; 393-400. Yang, S. Cao, J. Hu, W. Zhang, X. & Duan, C. (2013). An evaluation of the effectiveness of novel industrial by-products & organic wastes on heavy metal immobilization in Pb–Zn mine tailings. Environmental Science: Processes & Impacts., 15; 2059-2067. Ye, C. He, F. Shu, H. Qi, H. Zhang, Q. Song, P. & Xie, J. (2015). Preparation & properties of sintered glass–ceramics containing Au–Cu tailing waste. Materials & Design., 86; 782-787. Ye, Z. Hong, S. He, C. Zhang, Y. Wang, Y. Zhu, H. & Hou, H. (2022). Evaluation of different factors on metal leaching from nickel tailings using generalized additive model (GAM). Ecotoxicology & Environmental Safety., 236; 113488. Younger, P. L. & Wolkersdorfer, C. (2004). Mining impacts on the fresh water environment: technical & managerial guidelines for catchment scale management. Mine water & the environment, 23, s2-s80. Zandi, M. & Russell, N. V. (2007). Design of a leaching test framework for coal fly ash accounting for environmental conditions. Environmental monitoring & assessment., 131; 509-526. Zhang, Y. Jiang, J. & Maozhe, C. (2008). MINTEQ modeling for evaluating the leaching behavior of heavy metals in MSWI fly ash. Journal of Environmental Sciences., 20; 1398-1402. Zhang, Y. Zhang, S. Ni, W. Yan, Q. Gao, W. & Li, Y. (2019). Immobilisation of high-arsenic-containing tailings by using metallurgical slag-cementing materials. Chemosphere., 223; 117-123. | ||
آمار تعداد مشاهده مقاله: 390 تعداد دریافت فایل اصل مقاله: 771 |