تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,118,748 |
تعداد دریافت فایل اصل مقاله | 97,224,832 |
Comparison of Azithromycin Toxicity in Chickens and Quails | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 4، دوره 17، شماره 4، دی 2023، صفحه 321-332 اصل مقاله (5.07 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.17.4.1005354 | ||
نویسندگان | ||
Yamama Z Al-Abdaly* 1؛ Mohammed Younis Alfathi2؛ Saevan Saad Al-mahmood3 | ||
1Department of Physiology, Biochemistry and Pharmacology College of Veterinary Medicine, University of Mosul, Mosul, Iraq. | ||
2Department of Biology, College of Education for Pure Science, University of Mosul, Mosul, Iraq. | ||
3Department of Pathology and Poultry Diseases, College of Veterinary Medicine, University of Mosul, Mosul, Iraq. | ||
چکیده | ||
Background: The pharmacologic and toxicological response to different drugs vary according to the type and breed of the animal. Objectives: This investigation was carried out to compare the toxic effects of azithromycin on chickens and quails. Methods: The animals of each kind were divided into 3 groups; the first group served as the control and received just distilled water; the second and third groups received different doses of azithromycin (5% and 10% of the median lethal dose) over 5 days. Results: Compared to quails, the LD50 in chicks was substantially higher. Both chicks and quails treated with high doses of azithromycin showed a substantial difference in neurobehavioral and motor measures. Total antioxidant capacity (TAC) and glutathione decrease in chicks receiving the high dose of azithromycin, whereas, in quail, the prior impact was present in both doses. With the cholinesterase activity in quails and chicks being inhibited, a high dose of azithromycin dramatically raised the level of caspase-3 in the quail. We observed severe diffuse vacuolar degeneration in hepatocytes with infiltration of inflammatory cells in quails and chicks in the high dose and less severe effects in quail and chicks in the lower dose. In quails’ livers, tumor necrosis factor-(TNF)-α was strongly expressed at high and weakly at low doses. Still, in chickens’ livers, TNF-α expression was moderate at high and low at low doses. Conclusion: At the same percentages and dose of the LD50 in both quails and chicks, azithromycin causes severe toxic effects in quails but less toxic effects in chickens. | ||
کلیدواژهها | ||
Azithromycin؛ Birds؛ Caspase-3؛ Neuro-behavioral؛ TNF-α؛ Toxicity | ||
اصل مقاله | ||
1. Introduction
The results showed an inhibition in the activity of cholinesterase enzyme in chicks and quails compared with the control, while caspase-3 did not make any significant difference in its level in chicks, while in quails, the level of caspase-3 increased significantly at the high dose compared with the control and according to the dose administered (Table 6 and Table 7).
The direct mechanisms of neurotoxicity include reduced neuronal energy generation with consequent disruptions in ion channel function, disruptions in the synthesis and release of neurotransmitters from nerve endings. Finally, calcium-dependent apoptotic processes and disturbed neurotransmitter (serotonin, noradrenaline, dopamine, acetylcholine) release occur (Wu et al., 2021).
Abdel-Wahab, B. A., & Metwally, M. E. (2015). Clozapine-induced cardiotoxicity: Role of oxidative stress, tumour necrosis factor alpha and NF-κβ. Cardiovascular Toxicology, 15(4), 355-365. [DOI:10.1007/s12012-014-9304-9] [PMID] Alabdaly, Y. Z., Al-Hamdany, E. K., & Abed, E. R. (2021). Toxic effects of butylated hydroxytoluene in rats. Iraqi Journal of Veterinary Sciences, 35(1), 121-128. [DOI:10.33899/ijvs.2020.126435.1322] Al-Abdaly, Y. Z., Saeed, M. G., & Al-Hashemi, H. M. (2021). Effect of methotrexate and aspirin interaction and its relationship to oxidative stress in rats. Iraqi Journal of Veterinary Science, 35(1), 151-156. [DOI:10.33899/ijvs.2020.126490.1335] Alabdaly, Y. Z. (2021). Effect of diclofenac on the pharmacokinetics of ciprofloxacin in quail. Iraqi Journal of Veterinary Science,35(4), 777-781. [DOI:10.33899/ijvs.2021.128440.1576] Alabsy, E. H., & Alabdaly, Y. Z. (2022). Therapeutic effect of taurine on sodium fluoride toxicity in chicks. Iraqi Journal of Veterinary Sciences, 36(1), 223-238. [DOI:10.33899/ijvs.2021.129854.1692] Andreani, J., Le Bideau, M., Duflot, I., Jardot, P., Rolland, C., & Boxberger, M., et al. (2020). In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microbology & Pathoglogy, 145, 104228. [DOI:10.1016/j.micpath.2020.104228] [PMID] [PMCID] Atli, O., Ilgin, S., Altuntas, H., & Burukoglu, D. (2015). Evaluation of azithromycin induced cardiotoxicity in rats. International Journal of Clinical and Experimental Medicine, 8(3), 3681-3690. [PMID] Baker, J., Liu, J. P., Robertson, E. J., & Efstratiadis, A. (1993). Role of insulin-like growth factors in embryonic and postnatal growth. Cell, 75(1), 73-82. [DOI:10.1016/S0092-8674(05)80085-6] [PMID] Beigel, J. H., Tomashek, K. M., & Dodd, L. E. (2020). Remdesivir for the treatment of Covid-19-Preliminary report. The New England Journal of Medicine, 383, 992-994. [DOI:10.1056/NEJMc2022236] Brannen, K. C., Panzica-Kelly, J. M., Danberry, T. L., & Augustine-Rauch, K. A. (2010). Development of a zebrafish embryo teratogenicity assay and quantitative prediction model. Birth Defects Research. Part B, Developmental and Reproductive Toxicology, 89(1), 66-77. [DOI:10.1002/bdrb.20223] [PMID] Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302-310. [DOI:10.1016/S0076-6879(78)52032-6.] [PMID] Cai, J., Zhao, Y., Liu, Y., Ye, F., Song, Z., & Qin, H., et al. (2007). Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology, 45(5), 1229-1239. [DOI:10.1002/hep.21582] [PMID] Cai, X., Lu, W., Yang, Y., Yang, J., Ye, J., & Gu, Z., et al. (2013). Digitoflavone inhibits IκBα kinase and enhances apoptosis induced by TNFα through downregulation of expression of nuclear factor κB-regulated gene products in human pancreatic cancer cells. PloS one, 8(10), e77126. [PMID] [PMCID] Dixon, W.J. (1980). Efficient analysis of experimental observations. Annual Review of Pharmacological Toxicology, 20, 441-462. [DOI:10.1146/annurev.pa.20.040180.002301] [PMID] El-Ghany, W. A. A. (2019). A comprehensive review on the common emerging diseases in quails. Journal of World’s Poultry Research, 9(4), 160-174. [DOI:10.36380/jwpr.2019.20] Gudev, D., Moneva, P., Popova-Ralcheva, S., & Sredkova, V. (2011). Tonic immobility and adrenal response in chickens fed supplemental tryptophan. Bulgarian Journal of Agricultural Science, 17(4), 560-566. [Link] Hodge, S., Hodge, G., Brozyna, S., Jersmann, H., Holmes, M., & Reynolds, P. N. (2006). Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. The European Respiratory Journal, 28(3), 486-495. [DOI:10.1183/09031936.06.00001506] [PMID] Jain, K.K. (2012). Pathomechanisms of drug-induced neurological disorders. In: K. K. Jain (Ed), Drug-induced neurological disorders(pp. 7-12). Göttingen: Hogrefe Pub. [Link] James, R. C., Goodman, D. R., & Harbison, R. D. (1982). Hepatic glutathione and hepatotoxicity: Changes induced by selected narcotics.The Journal of Pharmacology and Experimental Therapeutics, 221(3), 708–714. [PMID] Kanoh, S., & Rubin, B. K. (2010). Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clinical Microbiology Reviews, 23(3), 590-615. [DOI:10.1128/CMR.00078-09] [PMID] [PMCID] Karakurt, E., Beytut, E., Dağ, S., Nuhoğlu, H., Yıldız, A., & Kurtbaş, E. (2022). Immunohistochemical detection of TNF-α and IFN-γ expressions in the lungs of sheep with pulmonary adenocarcinomas. Acta Veterinaria Eurasia, 48, 161-166. [DOI:10.5152/actavet.2022.21124] Karabulut, A. K., Uysal, I. I., Acar, H., & Fazliogullari, Z. (2008). Investigation of developmental toxicity and teratogenicity of macrolide antibiotics in cultured rat embryos. Anatomia, Histologia, Embryologia, 37(5), 369-375. [DOI:10.1111/j.1439-0264.2008.00861.x] [PMID] Koohkan, O., Morovvati, H., & Mirghaed, A. T. (2023). Effects of spirulina platensis on iron oxide nanoparticles induced-oxidative stress and liver damage in grey mullet (mugil cephalus). Iranian Journal of Veterinary Medicine, 17(1), 75-86. [DOI:10.32598/IJVM.17.1.1005284] Liu, K., Wang, G., Li, L., Chen, G., Gong, X., & Zhang, Q., et al. (2020). GR-C/EBPα-IGF1 axis mediated azithromycin-induced liver developmental toxicity in fetal mice. Biochemical Pharmacology, 180, 114130. [DOI:10.1016/j.bcp.2020.114130] [PMID] Liu, L., Wu, W., Zhang, J., Lv, P., Xu, L., & Yan, Y. (2018). Progress of research on the toxicology of antibiotic pollution in aquatic organisms. Acta Ecologica Sinica, 38(1), 36-41. [DOI:10.1016/j.chnaes.2018.01.006] Mao, Y., Yu, Y., Ma, Z., Li, H., Yu, W., & Cao, L., et al. (2021). Azithromycin induces dual effects on microalgae: Roles of photosynthetic damage and oxidative stress. Ecotoxicology and Environmental Safety, 222, 112496. [DOI:10.1016/j.ecoenv.2021.112496] [PMID] Mhadhbi, L., El Ayari, T., Tir, M., & Kadri, D. (2022). Azithromycin effects on the European sea bass (Dicentrarchus labrax) early life stages following acute and chronic exposure: laboratory bioassays. Drug and Chemical Toxicology, 45(3), 1295-1301. [DOI:10.1080/01480545.2020.1822388] [PMID] Mohammad, F. K., Faris, G. A., & Al-Kassim, N. A. (1997). A modified electrometric method for measurement of erythrocyte acetylcholinesterase activity in sheep. Veterinary and Human Toxicology, 39(6), 337-339. [PMID] Motaghi, S., Jonaidi, H., Bashiri, A., & Gooshki, S. N. (2021). Purinergic regulation of food and fat intakes in broiler’s central nervous system. Iranian Journal of Veterinary Medicine, 15(4), 404-410. [Link] Pacher, P., Schulz, R., Liaudet, L., & Szabó, C. (2005). Nitrosative stress and pharmacological modulation of heart failure. Trends in Pharmacological Sciences, 26(6), 302-310. [DOI:10.1016/j.tips.2005.04.003] [PMID] [PMCID] Rassouli, A., Falahatipour, S. K., Ardakani, Y. H., Javar, H. A., & Kiani, K. (2021). Comparative Pharmacokinetics of enrofloxacin after subcutaneousadministration of a novel in situ gel forming preparation and aconventional product to rabbits. Iranian Journal of Veterinary Medicine, 15(1), 68-78. [Link] Peruzzo, R., & Szabo, I. (2019). Contribution of mitochondrial ion channels to chemo-resistance in cancer cells. Cancers, 11(6), 761. [DOI:10.3390/cancers11060761] [PMID] [PMCID] Rhee, J. S., Jeong, C. B., Kim, B. M., & Lee, J. S. (2012). P-glycoprotein (P-gp) in the monogonont rotifer, Brachionus koreanus: Molecular characterization and expression in response to pharmaceuticals. Aquatic Toxicology, 114-115, 104-118. [DOI:10.1016/j.aquatox.2012.02.009] [PMID] Rhee, J. S., Kim, B. M., Jeong, C. B., Park, H. G., Leung, K. M., & Lee, Y. M., et al. (2013). Effect of pharmaceuticals exposure on acetylcholinesterase (AchE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 158(4), 216-224. [DOI:10.1016/j.cbpc.2013.08.005] [PMID] Rodrigues, S., Antunes, S. C., Correia, A. T., & Nunes, B. (2016). Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss. The Science of The Total Environment, 545-546, 591–600.[DOI:10.1016/j.scitotenv.2015.10.138] [PMID] Rodrigues, S., Antunes, S. C., Correia, A. T., & Nunes, B. (2016). Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss. The Science of the Total Environment, 545-546, 591-600. [DOI:10.1016/j.scitotenv.2015.10.138] [PMID] Shin, W. S., Szuba, A., & Rockson, S. G. (2002). The role of chemokines in human cardiovascular pathology: Enhanced biological insights. Atherosclerosis, 160(1), 91-102. [DOI:10.1016/S0021-9150(01)00571-8] [PMID] Shiogiri, N. S., Ikefuti, C. V., Carraschi, S. P., da Cruz, C., & Fernandes, M. N. (2017). Effects of azithromycin on tilapia (Oreochromis niloticus): Health status evaluation using biochemical, physiological and morphological biomarkers. Aquacultur Research, 48(7), 3669-3683. [DOI:10.1111/are.13191] Mohammad Ahmadi Soleimani, S., Ekhtiari, H., & Cadet, J. L. (2016). Drug-induced neurotoxicity in addiction medicine: From prevention to harm reduction. Progress in Brain Research, 223, 19-41. [DOI:10.1016/bs.pbr.2015.07.004] [PMID] Tosh, D. N., Fu, Q., Callaway, C. W., McKnight, R. A., McMillen, I. C., & Ross, M. G., et al. (2010). Epigenetics of programmed obesity: Alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs. delayed postnatal catch-up growth. American Journal of Physiology-Gastrointestinal and Liver Physiology, 299(5), G1023-G1029. [DOI:10.1152/ajpgi.00052.2010] [PMID] [PMCID] Tsai, W. C., Hershenson, M. B., Zhou, Y., & Sajjan, U. (2009). Azithromycin increases survival and reduces lung inflammation in cystic fibrosis mice. Inflammation Research, 58(8), 491-501. [DOI:10.1007/s00011-009-0015-9] [PMID] [PMCID] Van Acker, H., & Coenye, T. (2017). The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends in Microbiology, 25(6), 456-466. [DOI:10.1016/j.tim.2016.12.008] [PMID] Wan, X., Zhao, J., & Xie, J. (2012). Effects of mitochondrial ATP-sensitive K+ channel on protein kinase C pathway and airway smooth muscle cell proliferation in asthma. Journal of Huazhong University of Science and Technology [Medical Sciences], 32(4), 480-484. [DOI:10.1007/s11596-012-0083-x] [PMID] Wang, L., Shen, L., Ping, J., Zhang, L., Liu, Z., & Wu, Y., et al. (2014). Intrauterine metabolic programming alteration increased susceptibility to non-alcoholic adult fatty liver disease in prenatal caffeine-exposed rat offspring. Toxicology Letters, 224(3), 311-318. [DOI:10.1016/j.toxlet.2013.11.006] [PMID] Wu, L., Yin, J., Zhang, Q., Wang, M., Dai, W., & Zhou, J., et al. (2021). Azithromycin induces apoptosis in airway smooth muscle cells through mitochondrial pathway in a rat asthma model. Annals of Translational Medicine, 9(14), 1181. [DOI:10.21037/atm-21-3478] [PMID] Yan, Z., Huang, X., Xie, Y., Song, M., Zhu, K., & Ding, S. (2019). Macrolides induce severe cardiotoxicity and developmental toxicity in zebrafish embryos. The Science of The Total Environment, 649, 1414-1421. [DOI:10.1016/j.scitotenv.2018.07.432] [PMID] Zimmermann, P., Ziesenitz, V. C., Curtis, N., & Ritz, N. (2018). The immunomodulatory effects of macrolides-a systematic review of the underlying mechanisms. Frontiers in Immunology, 9, 302. [DOI:10.3389/fimmu.2018.00302] [PMID] [PMCID] | ||
مراجع | ||
Abdel-Wahab, B. A., & Metwally, M. E. (2015). Clozapine-induced cardiotoxicity: Role of oxidative stress, tumour necrosis factor alpha and NF-κβ. Cardiovascular Toxicology, 15(4), 355-365. [DOI:10.1007/s12012-014-9304-9] [PMID]
Alabdaly, Y. Z., Al-Hamdany, E. K., & Abed, E. R. (2021). Toxic effects of butylated hydroxytoluene in rats. Iraqi Journal of Veterinary Sciences, 35(1), 121-128. [DOI:10.33899/ijvs.2020.126435.1322]
Al-Abdaly, Y. Z., Saeed, M. G., & Al-Hashemi, H. M. (2021). Effect of methotrexate and aspirin interaction and its relationship to oxidative stress in rats. Iraqi Journal of Veterinary Science, 35(1), 151-156. [DOI:10.33899/ijvs.2020.126490.1335]
Alabdaly, Y. Z. (2021). Effect of diclofenac on the pharmacokinetics of ciprofloxacin in quail. Iraqi Journal of Veterinary Science,35(4), 777-781. [DOI:10.33899/ijvs.2021.128440.1576]
Alabsy, E. H., & Alabdaly, Y. Z. (2022). Therapeutic effect of taurine on sodium fluoride toxicity in chicks. Iraqi Journal of Veterinary Sciences, 36(1), 223-238. [DOI:10.33899/ijvs.2021.129854.1692]
Andreani, J., Le Bideau, M., Duflot, I., Jardot, P., Rolland, C., & Boxberger, M., et al. (2020). In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microbology & Pathoglogy, 145, 104228. [DOI:10.1016/j.micpath.2020.104228] [PMID] [PMCID]
Atli, O., Ilgin, S., Altuntas, H., & Burukoglu, D. (2015). Evaluation of azithromycin induced cardiotoxicity in rats. International Journal of Clinical and Experimental Medicine, 8(3), 3681-3690. [PMID]
Baker, J., Liu, J. P., Robertson, E. J., & Efstratiadis, A. (1993). Role of insulin-like growth factors in embryonic and postnatal growth. Cell, 75(1), 73-82. [DOI:10.1016/S0092-8674(05)80085-6] [PMID]
Beigel, J. H., Tomashek, K. M., & Dodd, L. E. (2020). Remdesivir for the treatment of Covid-19-Preliminary report. The New England Journal of Medicine, 383, 992-994. [DOI:10.1056/NEJMc2022236]
Brannen, K. C., Panzica-Kelly, J. M., Danberry, T. L., & Augustine-Rauch, K. A. (2010). Development of a zebrafish embryo teratogenicity assay and quantitative prediction model. Birth Defects Research. Part B, Developmental and Reproductive Toxicology, 89(1), 66-77. [DOI:10.1002/bdrb.20223] [PMID]
Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302-310. [DOI:10.1016/S0076-6879(78)52032-6.] [PMID]
Cai, J., Zhao, Y., Liu, Y., Ye, F., Song, Z., & Qin, H., et al. (2007). Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology, 45(5), 1229-1239. [DOI:10.1002/hep.21582] [PMID]
Cai, X., Lu, W., Yang, Y., Yang, J., Ye, J., & Gu, Z., et al. (2013). Digitoflavone inhibits IκBα kinase and enhances apoptosis induced by TNFα through downregulation of expression of nuclear factor κB-regulated gene products in human pancreatic cancer cells. PloS one, 8(10), e77126. [PMID] [PMCID]
Dixon, W.J. (1980). Efficient analysis of experimental observations. Annual Review of Pharmacological Toxicology, 20, 441-462. [DOI:10.1146/annurev.pa.20.040180.002301] [PMID]
El-Ghany, W. A. A. (2019). A comprehensive review on the common emerging diseases in quails. Journal of World’s Poultry Research, 9(4), 160-174. [DOI:10.36380/jwpr.2019.20]
Gudev, D., Moneva, P., Popova-Ralcheva, S., & Sredkova, V. (2011). Tonic immobility and adrenal response in chickens fed supplemental tryptophan. Bulgarian Journal of Agricultural Science, 17(4), 560-566. [Link]
Hodge, S., Hodge, G., Brozyna, S., Jersmann, H., Holmes, M., & Reynolds, P. N. (2006). Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages. The European Respiratory Journal, 28(3), 486-495. [DOI:10.1183/09031936.06.00001506] [PMID]
Jain, K.K. (2012). Pathomechanisms of drug-induced neurological disorders. In: K. K. Jain (Ed), Drug-induced neurological disorders(pp. 7-12). Göttingen: Hogrefe Pub. [Link]
James, R. C., Goodman, D. R., & Harbison, R. D. (1982). Hepatic glutathione and hepatotoxicity: Changes induced by selected narcotics.The Journal of Pharmacology and Experimental Therapeutics, 221(3), 708–714. [PMID]
Kanoh, S., & Rubin, B. K. (2010). Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clinical Microbiology Reviews, 23(3), 590-615. [DOI:10.1128/CMR.00078-09] [PMID] [PMCID]
Karakurt, E., Beytut, E., Dağ, S., Nuhoğlu, H., Yıldız, A., & Kurtbaş, E. (2022). Immunohistochemical detection of TNF-α and IFN-γ expressions in the lungs of sheep with pulmonary adenocarcinomas. Acta Veterinaria Eurasia, 48, 161-166. [DOI:10.5152/actavet.2022.21124]
Karabulut, A. K., Uysal, I. I., Acar, H., & Fazliogullari, Z. (2008). Investigation of developmental toxicity and teratogenicity of macrolide antibiotics in cultured rat embryos. Anatomia, Histologia, Embryologia, 37(5), 369-375. [DOI:10.1111/j.1439-0264.2008.00861.x] [PMID]
Koohkan, O., Morovvati, H., & Mirghaed, A. T. (2023). Effects of spirulina platensis on iron oxide nanoparticles induced-oxidative stress and liver damage in grey mullet (mugil cephalus). Iranian Journal of Veterinary Medicine, 17(1), 75-86. [DOI:10.32598/IJVM.17.1.1005284]
Liu, K., Wang, G., Li, L., Chen, G., Gong, X., & Zhang, Q., et al. (2020). GR-C/EBPα-IGF1 axis mediated azithromycin-induced liver developmental toxicity in fetal mice. Biochemical Pharmacology, 180, 114130. [DOI:10.1016/j.bcp.2020.114130] [PMID]
Liu, L., Wu, W., Zhang, J., Lv, P., Xu, L., & Yan, Y. (2018). Progress of research on the toxicology of antibiotic pollution in aquatic organisms. Acta Ecologica Sinica, 38(1), 36-41. [DOI:10.1016/j.chnaes.2018.01.006]
Mao, Y., Yu, Y., Ma, Z., Li, H., Yu, W., & Cao, L., et al. (2021). Azithromycin induces dual effects on microalgae: Roles of photosynthetic damage and oxidative stress. Ecotoxicology and Environmental Safety, 222, 112496. [DOI:10.1016/j.ecoenv.2021.112496] [PMID]
Mhadhbi, L., El Ayari, T., Tir, M., & Kadri, D. (2022). Azithromycin effects on the European sea bass (Dicentrarchus labrax) early life stages following acute and chronic exposure: laboratory bioassays. Drug and Chemical Toxicology, 45(3), 1295-1301. [DOI:10.1080/01480545.2020.1822388] [PMID]
Mohammad, F. K., Faris, G. A., & Al-Kassim, N. A. (1997). A modified electrometric method for measurement of erythrocyte acetylcholinesterase activity in sheep. Veterinary and Human Toxicology, 39(6), 337-339. [PMID]
Motaghi, S., Jonaidi, H., Bashiri, A., & Gooshki, S. N. (2021). Purinergic regulation of food and fat intakes in broiler’s central nervous system. Iranian Journal of Veterinary Medicine, 15(4), 404-410. [Link]
Pacher, P., Schulz, R., Liaudet, L., & Szabó, C. (2005). Nitrosative stress and pharmacological modulation of heart failure. Trends in Pharmacological Sciences, 26(6), 302-310. [DOI:10.1016/j.tips.2005.04.003] [PMID] [PMCID]
Rassouli, A., Falahatipour, S. K., Ardakani, Y. H., Javar, H. A., & Kiani, K. (2021). Comparative Pharmacokinetics of enrofloxacin after subcutaneousadministration of a novel in situ gel forming preparation and aconventional product to rabbits. Iranian Journal of Veterinary Medicine, 15(1), 68-78. [Link]
Peruzzo, R., & Szabo, I. (2019). Contribution of mitochondrial ion channels to chemo-resistance in cancer cells. Cancers, 11(6), 761. [DOI:10.3390/cancers11060761] [PMID] [PMCID]
Rhee, J. S., Jeong, C. B., Kim, B. M., & Lee, J. S. (2012). P-glycoprotein (P-gp) in the monogonont rotifer, Brachionus koreanus: Molecular characterization and expression in response to pharmaceuticals. Aquatic Toxicology, 114-115, 104-118. [DOI:10.1016/j.aquatox.2012.02.009] [PMID]
Rhee, J. S., Kim, B. M., Jeong, C. B., Park, H. G., Leung, K. M., & Lee, Y. M., et al. (2013). Effect of pharmaceuticals exposure on acetylcholinesterase (AchE) activity and on the expression of AchE gene in the monogonont rotifer, Brachionus koreanus. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 158(4), 216-224. [DOI:10.1016/j.cbpc.2013.08.005] [PMID]
Rodrigues, S., Antunes, S. C., Correia, A. T., & Nunes, B. (2016). Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss. The Science of The Total Environment, 545-546, 591–600.[DOI:10.1016/j.scitotenv.2015.10.138] [PMID]
Rodrigues, S., Antunes, S. C., Correia, A. T., & Nunes, B. (2016). Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss. The Science of the Total Environment, 545-546, 591-600. [DOI:10.1016/j.scitotenv.2015.10.138] [PMID]
Shin, W. S., Szuba, A., & Rockson, S. G. (2002). The role of chemokines in human cardiovascular pathology: Enhanced biological insights. Atherosclerosis, 160(1), 91-102. [DOI:10.1016/S0021-9150(01)00571-8] [PMID]
Shiogiri, N. S., Ikefuti, C. V., Carraschi, S. P., da Cruz, C., & Fernandes, M. N. (2017). Effects of azithromycin on tilapia (Oreochromis niloticus): Health status evaluation using biochemical, physiological and morphological biomarkers. Aquacultur Research, 48(7), 3669-3683. [DOI:10.1111/are.13191]
Mohammad Ahmadi Soleimani, S., Ekhtiari, H., & Cadet, J. L. (2016). Drug-induced neurotoxicity in addiction medicine: From prevention to harm reduction. Progress in Brain Research, 223, 19-41. [DOI:10.1016/bs.pbr.2015.07.004] [PMID]
Tosh, D. N., Fu, Q., Callaway, C. W., McKnight, R. A., McMillen, I. C., & Ross, M. G., et al. (2010). Epigenetics of programmed obesity: Alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs. delayed postnatal catch-up growth. American Journal of Physiology-Gastrointestinal and Liver Physiology, 299(5), G1023-G1029. [DOI:10.1152/ajpgi.00052.2010] [PMID] [PMCID]
Tsai, W. C., Hershenson, M. B., Zhou, Y., & Sajjan, U. (2009). Azithromycin increases survival and reduces lung inflammation in cystic fibrosis mice. Inflammation Research, 58(8), 491-501. [DOI:10.1007/s00011-009-0015-9] [PMID] [PMCID]
Van Acker, H., & Coenye, T. (2017). The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends in Microbiology, 25(6), 456-466. [DOI:10.1016/j.tim.2016.12.008] [PMID]
Wan, X., Zhao, J., & Xie, J. (2012). Effects of mitochondrial ATP-sensitive K+ channel on protein kinase C pathway and airway smooth muscle cell proliferation in asthma. Journal of Huazhong University of Science and Technology [Medical Sciences], 32(4), 480-484. [DOI:10.1007/s11596-012-0083-x] [PMID]
Wang, L., Shen, L., Ping, J., Zhang, L., Liu, Z., & Wu, Y., et al. (2014). Intrauterine metabolic programming alteration increased susceptibility to non-alcoholic adult fatty liver disease in prenatal caffeine-exposed rat offspring. Toxicology Letters, 224(3), 311-318. [DOI:10.1016/j.toxlet.2013.11.006] [PMID]
Wu, L., Yin, J., Zhang, Q., Wang, M., Dai, W., & Zhou, J., et al. (2021). Azithromycin induces apoptosis in airway smooth muscle cells through mitochondrial pathway in a rat asthma model. Annals of Translational Medicine, 9(14), 1181. [DOI:10.21037/atm-21-3478] [PMID]
Yan, Z., Huang, X., Xie, Y., Song, M., Zhu, K., & Ding, S. (2019). Macrolides induce severe cardiotoxicity and developmental toxicity in zebrafish embryos. The Science of The Total Environment, 649, 1414-1421. [DOI:10.1016/j.scitotenv.2018.07.432] [PMID]
Zimmermann, P., Ziesenitz, V. C., Curtis, N., & Ritz, N. (2018). The immunomodulatory effects of macrolides-a systematic review of the underlying mechanisms. Frontiers in Immunology, 9, 302. [DOI:10.3389/fimmu.2018.00302] [PMID] [PMCID] | ||
آمار تعداد مشاهده مقاله: 681 تعداد دریافت فایل اصل مقاله: 758 |