تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,122,345 |
تعداد دریافت فایل اصل مقاله | 97,230,138 |
Optimum design of a micro-positioning compliant mechanism based on neural network metamodeling | ||
Journal of Computational Applied Mechanics | ||
دوره 54، شماره 2، شهریور 2023، صفحه 236-253 اصل مقاله (1.17 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jcamech.2023.351454.775 | ||
نویسندگان | ||
Erfan Norouzi Farahani؛ Niloofar Ramroodi؛ Maryam Mahnama* | ||
School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran. | ||
چکیده | ||
This paper presents a comprehensive investigation of the optimization process of a compliant nano-positioning mechanism based on a high-accuracy metamodel. Within this study, analytical approach, finite element analysis (FEA), and deep neural network (DNN) are integrated in order to achieve the optimum design of a parallel 2-degree-of-freedom compliant positioner while taking a broad range of factors into account. First, a linear regression analysis is performed on the primary finite element model as a sensitivity analysis. Then an analytical model is established to express one of the objective functions of design, namely the mechanism working range, as a function of characteristic features: the mechanism stiffness and displacement amplification ratio (λ). In the optimization procedure, a single objective constrained particle swarm optimization (SOCPSO) algorithm acts on the metamodel to maximize the resonant frequency and provide the minimum acceptable working range. The proposed optimization guideline is established for seven different desired working ranges and succeeded in predicting the objective function with an error of less than 3%. The findings provide insights into the design and geometric optimization of the mechanical structures. Furthermore, it will be employed as a guideline for implementing DNN for metamodeling in other engineering problems. | ||
کلیدواژهها | ||
Compliant mechanism؛ Finite Element Analysis (FEA)؛ Metamodel؛ Deep Neural Networks (DNN)؛ Single-Objective Constrained Particle Swarm Optimization (SOCPSO) algorithm | ||
مراجع | ||
[1] W. Dong, F. Chen, F. Gao, M. Yang, L. Sun, Z. Du, J. Tang, D. Zhang, Development and analysis of a bridge-lever-type displacement amplifier based on hybrid flexure hinges, Precision Engineering, Vol. 54, pp. 171-181, 2018.
[2] S. Iqbal, A. Malik, A review on MEMS based micro displacement amplification mechanisms, Sensors and Actuators A: Physical, Vol. 300, pp. 111666, 2019.
[3] J. Wei, S. Fatikow, X. Zhang, O. C. Haenssler, Design and experimental evaluation of a compliant mechanism-based stepping-motion actuator with multi-mode, Smart Materials and Structures, Vol. 27, No. 10, pp. 105014, 2018.
[4] M. Ling, X. Zhang, Coupled dynamic modeling of piezo-actuated compliant mechanisms subjected to external loads, Mechanism and Machine Theory, Vol. 160, pp. 104283, 2021.
[5] P. Gräser, S. Linß, F. Harfensteller, M. Torres, L. Zentner, R. Theska, High-precision and large-stroke XY micropositioning stage based on serially arranged compliant mechanisms with flexure hinges, Precision Engineering, 2021.
[6] W.-L. Zhu, Z. Zhu, P. Guo, B.-F. Ju, A novel hybrid actuation mechanism based XY nanopositioning stage with totally decoupled kinematics, Mechanical Systems and Signal Processing, Vol. 99, pp. 747-759, 2018.
[7] L. L. Howell, Compliant mechanisms, in: 21st century kinematics, Eds., pp. 189-216: Springer, 2013.
[8] L. Zentner, S. Linß, 2019, Compliant systems: Mechanics of elastically deformable mechanisms, actuators and sensors, Walter de Gruyter GmbH & Co KG,
[9] M. Ling, J. Cao, M. Zeng, J. Lin, D. J. Inman, Enhanced mathematical modeling of the displacement amplification ratio for piezoelectric compliant mechanisms, Smart Materials and Structures, Vol. 25, No. 7, pp. 075022, 2016.
[10] X. Xi, T. Clancy, X. Wu, Y. Sun, X. Liu, A MEMS XY-stage integrating compliant mechanism for nanopositioning at sub-nanometer resolution, Journal of Micromechanics and Microengineering, Vol. 26, No. 2, pp. 025014, 2016.
[11] Y. K. Yong, S. S. Aphale, S. R. Moheimani, Design, identification, and control of a flexure-based XY stage for fast nanoscale positioning, IEEE Transactions on Nanotechnology, Vol. 8, No. 1, pp. 46-54, 2008.
[12] P. Wang, Q. Xu, Design and testing of a flexure-based constant-force stage for biological cell micromanipulation, IEEE Transactions on automation science and engineering, Vol. 15, No. 3, pp. 1114-1126, 2017.
[13] T. K. Das, B. Shirinzadeh, M. Ghafarian, A. Al-Jodah, Design, analysis, and experimental investigation of a single-stage and low parasitic motion piezoelectric actuated microgripper, Smart Materials and Structures, Vol. 29, No. 4, pp. 045028, 2020.
[14] Y.-l. Yang, Y.-d. Wei, J.-q. Lou, G. Tian, X.-w. Zhao, L. Fu, A new piezo-driven microgripper based on the double-rocker mechanism, Smart Materials and Structures, Vol. 24, No. 7, pp. 075031, 2015.
[15] T. Jin, S. Luo, Y. Le, J. Wu, L. Lei, B. Zhang, Design and analysis of a low crosstalk error nested structure two-dimensional micro-displacement stage, Advances in Mechanical Engineering, Vol. 13, No. 4, pp. 16878140211014061, 2021.
[16] Z. Wu, Q. Xu, Design, optimization and testing of a compact XY parallel nanopositioning stage with stacked structure, Mechanism and Machine Theory, Vol. 126, pp. 171-188, 2018.
[17] Q. Xu, Design and development of a compact flexure-based $ XY $ precision positioning system with centimeter range, IEEE Transactions on Industrial Electronics, Vol. 61, No. 2, pp. 893-903, 2013.
[18] C.-X. Li, G.-Y. Gu, M.-J. Yang, L.-M. Zhu, Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage, Review of Scientific instruments, Vol. 84, No. 12, pp. 125111, 2013.
[19] S. P. Wadikhaye, Y. K. Yong, S. R. Moheimani, A novel serial-kinematic AFM scanner: design and characterization, in Proceeding of, IEEE, pp. 50-55.
[20] B. J. Kenton, K. K. Leang, Design and control of a three-axis serial-kinematic high-bandwidth nanopositioner, IEEE/ASME Transactions on Mechatronics, Vol. 17, No. 2, pp. 356-369, 2011.
[21] H. Tang, Y. Li, J. Huang, Design and analysis of a dual-mode driven parallel XY micromanipulator for micro/nanomanipulations, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 226, No. 12, pp. 3043-3057, 2012.
[22] N. Hosseini, A. Nievergelt, J. Adams, V. Stavrov, G. Fantner, A monolithic MEMS position sensor for closed-loop high-speed atomic force microscopy, Nanotechnology, Vol. 27, No. 13, pp. 135705, 2016.
[23] Q. Yao, J. Dong, P. M. Ferreira, Design, analysis, fabrication and testing of a parallel-kinematic micropositioning XY stage, International Journal of Machine Tools and Manufacture, Vol. 47, No. 6, pp. 946-961, 2007.
[24] F. Wang, X. Zhao, Z. Huo, B. Shi, C. Liang, Y. Tian, D. Zhang, A 2-DOF nano-positioning scanner with novel compound decoupling-guiding mechanism, Mechanism and Machine Theory, Vol. 155, pp. 104066, 2021.
[25] Y. Li, Q. Xu, A novel piezoactuated XY stage with parallel, decoupled, and stacked flexure structure for micro-/nanopositioning, IEEE Transactions on Industrial Electronics, Vol. 58, No. 8, pp. 3601-3615, 2010.
[26] H.-J. Lee, S. Woo, J. Park, J.-H. Jeong, M. Kim, J. Ryu, D.-G. Gweon, Y.-M. Choi, Compact compliant parallel XY nano-positioning stage with high dynamic performance, small crosstalk, and small yaw motion, Microsystem Technologies, Vol. 24, No. 6, pp. 2653-2662, 2018.
[27] Y. Tian, Y. Ma, F. Wang, K. Lu, D. Zhang, A novel XYZ micro/nano positioner with an amplifier based on L-shape levers and half-bridge structure, Sensors and Actuators A: Physical, Vol. 302, pp. 111777, 2020.
[28] Y. Qin, B. Shirinzadeh, Y. Tian, D. Zhang, Design issues in a decoupled XY stage: Static and dynamics modeling, hysteresis compensation, and tracking control, Sensors and Actuators A: Physical, Vol. 194, pp. 95-105, 2013.
[29] J. Ferreiro-Cabello, E. Fraile-Garcia, E. M. de Pison Ascacibar, F. Martinez-de-Pison, Metamodel-based design optimization of structural one-way slabs based on deep learning neural networks to reduce environmental impact, Engineering Structures, Vol. 155, pp. 91-101, 2018.
[30] T. T. Truong, J. Lee, T. Nguyen-Thoi, Multi-objective optimization of multi-directional functionally graded beams using an effective deep feedforward neural network-SMPSO algorithm, Structural and Multidisciplinary Optimization, Vol. 63, No. 6, pp. 2889-2918, 2021.
[31] D. Bielecki, D. Patel, R. Rai, G. F. Dargush, Multi-stage deep neural network accelerated topology optimization, Structural and Multidisciplinary Optimization, Vol. 64, No. 6, pp. 3473-3487, 2021.
[32] C. Qian, W. Ye, Accelerating gradient-based topology optimization design with dual-model artificial neural networks, Structural and Multidisciplinary Optimization, Vol. 63, No. 4, pp. 1687-1707, 2021.
[33] J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceeding of, IEEE, pp. 1942-1948.
[34] J. C. Bansal, P. Singh, M. Saraswat, A. Verma, S. S. Jadon, A. Abraham, Inertia weight strategies in particle swarm optimization, in Proceeding of, IEEE, pp. 633-640.
[35] Z. Zhao, Z. Chen, S. Liu, Hybrid FEM-ANN-PSO Method To Optimize The Structural Parameters Of Wafer-Level Chip Scale Package (WLCSP) For High Reliability, in Proceeding of, IEEE, pp. 1-5.
[36] H.-W. Ma, S.-M. Yao, L.-Q. Wang, Z. Zhong, Analysis of the displacement amplification ratio of bridge-type flexure hinge, Sensors and Actuators A: Physical, Vol. 132, No. 2, pp. 730-736, 2006.
[37] Y. Koseki, T. Tanikawa, N. Koyachi, T. Arai, Kinematic analysis of a translational 3-dof micro-parallel mechanism using the matrix method, Advanced Robotics, Vol. 16, No. 3, pp. 251-264, 2002.
[38] H.-H. Pham, I.-M. Chen, Stiffness modeling of flexure parallel mechanism, Precision Engineering, Vol. 29, No. 4, pp. 467-478, 2005.
[39] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann machines, in Proceeding of.
[40] D.-A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep network learning by exponential linear units (elus), arXiv preprint arXiv:1511.07289, 2015. | ||
آمار تعداد مشاهده مقاله: 542 تعداد دریافت فایل اصل مقاله: 472 |