- Adu-Poku, S. (2012). Comparing classification algorithms in data mining. MSc dissertation. Central Connecticut State University.
- Alijani, Z., Sarmadian, F. and Mousavi, R. (2014). Comparing the Accuracy of Soil Map Prepared by Geopedology and Usual Method of Iran (Case Study: Kouhin). Journal of range and watershed management, 67, 93-102.
- Behrens, T., Zhu, A., Schmidt, K. and Scholten, T. (2010). Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma, 155, 175–185.
- Beucher, A., Møller, A.B., and Greve, M.H. (2017). Artificial neural networks and decision tree classification for predicting soil drainage classes in Denmark. Geoderma, 352, 351-359.
- Brungard, C.W., Boettinger, J.L., Duniway, M.C., Wills, S.A. and Edwards, Jr. (2015). Machine learning for predicting soil classes in three semi-arid landscapes. Geoderma, 240, 68-83.
- Daigle, J.J., Hudnall, W.H., Gabriel, W.J., Mersiovsky, E. and Nielson, R.D. (2005). The National Soil Information System (NASIS): Designing soil interpretation classes for military land-use predictions. Journal of terra mechanics, 42(3), 305-320.
- Grunwald, S. (2009). Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, 152(3), 195-207.
- Harris, R.J. (2001). A Primer of Multivariate Statistics. Lawrence Erlbaum Associates, Inc., Mahwah, New Jersey.
- Hengl, T., Rossiter, D.G. and Stein, A. (2003). Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Soil Research, 41(8), 1403-1422.
- Heung, B., Bulmer, C.E. and Schmidt, M.G. (2014). Predictive soil parent material mapping at a regional-scale: a random forest approach. Geoderma, 214-215, 141–154.
- Jafari, A., Finke, P.A., Van deWauw, J., Ayoubi, S. and Khademi, H. (2012). Spatial prediction of USDA-great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types. Eur. J. Soil Sci, 63, 284-298.
- Jensen, J.R. (2005). Introductory Digital Image Processing a Remote Sensing Perspective. Prentice Hall Series in Geographic Information Science. Pearson Prentice Hall, Upper Saddle River, New Jersey, 526 pp.
- Kuhn, M., Weston, S., Coulter, N., Culp, M. and Quinlan, J.R. (2015). Package ‘C50’. https://cran.rproject.org/web/packages/C50/C50.pdf (accessed 20-07-16).
- Massawe, B.H., Subburayalu, S.K., Kaaya, A.K., Winowiecki, L. and Slater, B.K. (2016). Mapping numerically classified soil taxa in Kilombero Valley, Tanzania using machine learning. Geoderma, 311, 143-148.
- McBratney, A.B., Odeh, I.O., Bishop, T.F., Dunbar, M.S. and Shatar, T.M. (2000). An overview of pedometric techniques for use in soil survey. Geoderma, 97(3), 293-327.
- A.B., Mendonc. M.L.¸ Santos. A. and Minasny. B. (2003). On digital soil mapping. Geoderma, 117, 3–52.
- Minasny, B. and McBratney, A.B. (2016). Digital soil mapping: a brief history and some lessons. Geoderma, 264, 301–311.
- Mirakzehi, K., Pahlavan-Rad, M.R., Shahriari, A. and Bameri, A. (2018). Digital soil mapping of deltaic soils: A case of study from Hirmand (Helmand) river delta. Geoderma, 313, 233-240.
- Møller, A.B., Iversen, B.V., Beucher, A. and Greve, M.H. (2017). Prediction of soil drainage classes in Denmark by means of decision tree classification. Geoderma, 352, 314-322.
- Neyestani, M., Sarmadian, F., Jafari, A., Keshavarzi, A. and Sharififar, A. (2021). Digital mapping of soil classes using spatial extrapolation with imbalanced data. Geoderma Regional, 26, 415-422.
- Pires, J.C.M., Martins, F.G., Sousa, S.I.V., Alvim-Ferraz, M.C.M. and Pereira, M.C. (2008). Selection and validation of parameters in multiple linear and principal component regressions. Environmental Modelling & Software, 23(1), 50-55.
- Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers.
- Quinlan, J.R. (1979). Discovering rules by induction from large collections of examples. In D. Michie (Ed.), Expert systems in the micro electronic age. Edinburgh University Press.
- Ramsey, F.L. and Schafer, D.W. (2002). The Statistical Sleuth A Course in Methods of Data Analysis. Duxbury Thomson Learning, Pacific Grove, CA, 742 pp.
- O, D., Gustavo, M.V., Maurício, R.C. and Nelson, F.F. (2105). Digital soil mapping for soil class prediction in a dry forest of Minas Gerais, Brazil. Xv congresso brasiliero de ciencia do solo, 1-4.
- Rouse Jr, J., Haas, R.H., Schell, J.A. and Deering, D.W. (1974). Monitoring vegetation systems in the Great Plains with ERTS.
- Schmidt, K., Behrens, T. and Scholten, T. (2008). Instance selection and classification tree analysis for large spatial datasets in digital soil mapping. Geoderma, 146(1), 138-146.
- Scull, P., Franklin, J. and Chadwick, O.A. (2005). The application of classification tree analysis to soil type prediction in a desert landscape. Ecological Modelling, 181(1), 1-15.
- Shirali, R. (2016). Classification Trees and Rule-Based Modeling Using the C5. 0 Algorithm for Self-Image Across Sex and Race in St. Louis.
- Soil Survey Staff. (2014). Keys to Soil Taxonomy (12th. ed). USDA-Natural Resources Conservation Service. National Soil Survey Center, Lincoln, NE.
- Subburayalu, S.K., Jenhani, I. and Slater, B.K. (2014). Disaggregation of component soil series on an Ohio county soil survey map using possibilistic decision trees. Geoderma, 213, 334–345.
- Taghizadeh-Mehrjardi, R., Minasny, B., McBratney, A.B., Triantafilis, J., Sarmadian, F. and Toomanian, N. (2012). Digital soil mapping of soil classes using decision trees in central Iran. In Proceedings of the 5th Global Workshop on Digital Soil Mapping, pp. 197-202.
- Taghizadeh-Mehrjardi, R., Nabiollahi, K., Minasny, B. and Triantafilis, J. (2015). Comparing data mining classifiers to predict spatial distribution of USDA-family soil groups in Baneh region, Iran. Geoderma, 253-254, 67–77.
- Taghizadeh-Mehrjardi, R., Sarmadian, F., Minasny, B., Triantafilis, J. and Omid, M. (2014). Digital mapping of soil classes using decision tree and auxiliary data in the Ardakan region, Iran. Arid Land Research and Management, 28(2), 147-168.
- Travis, Nauman. (2009). Digital soil-landscape classification for soil survey using Aster satellite and digital elevation data in organ pipe cactus national monument. Msc dissertation in University of Arizona. 1-170.
- Wu, W., Li, A.D., He, X.H., Ma, R., Liu, H.B. and Lv, J.K. (2018). A comparison of support vector machines, artificial neural network and classification tree for identifying soil texture classes in southwest China. Computers and Electronics in Agriculture, 144, 86-93.
- Zandi, B.M. and Shekaari, P. (2019). Soil Distribution Pattern Analysis in a Low Relief Area Using Decision Trees Algorithm. Iranian Journal of Soil and Water Research, 50(2), 463-480.
- Zeraatpisheh, M., Ayoubi, S., Jafari, A. and Finke, P. (2017). Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran. Journal of Geomorphology, 285, 186-204.
- Zhu, A.X., Hudson, B., Burt, J., Lubich, K. and Simonson, D. (2001). Soil mapping using GIS, expert knowledge, and fuzzy logic. Journal of Soil Science Society of America, 65(5), 1463-1472.
|