تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,118,754 |
تعداد دریافت فایل اصل مقاله | 97,224,837 |
بهبود برآورد مقادیر شبیهسازی شده دبی رودخانه با استفاده از مدلهای ساختاری فضای حالت | ||
تحقیقات آب و خاک ایران | ||
دوره 53، شماره 8، آبان 1401، صفحه 1921-1936 اصل مقاله (2.08 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2022.344880.669299 | ||
نویسندگان | ||
امین محمدزاده شعبه گر1؛ محمدرضا شریفی* 2؛ فریدون رادمنش3؛ بهزاد منصوری4 | ||
1دانشجوی دکتری منابع آب، گروه هیدرولوژی و منابع آب، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
2دانشیار گروه هیدرولوژی و منابع آب، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
3گروه هیدرولوژی و منابع آب، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران. | ||
4گروه آمار، دانشکده علوم ریاضی و کامپیوتر، دانشگاه شهید چمران اهواز، اهواز، ایران. | ||
چکیده | ||
شبیهسازی سامانه، با ساختارهای متفاوت و با استفاده از رویکردها و الگوریتمهای مختلف صورت میگیرد. الگوریتمها روشهای هوشمند پردازش داده در یادگیری ماشین هستند که میتوانند عوامل ناشناخته در یک پدیده وابسته به زمان را شناسایی نمایند. در تحلیل پدیدههای تصادفی از جمله روشهایی که میتواند تصمیمگیری را سادهتر کند؛ استفاده از الگوریتمهای ترکیبی است. بهکمک این روش، مدیریت داده دقیقتر و شناخت بیشتری از سامانه مورد مطالعه بدست میآید. از آنجاییکه بررسی مؤلفه روند میتواند در شبیهسازی پدیدههای هیدرولوژیکی مؤثر باشد و در تفسیر رابطه بین فرآیندهای هیدرولوژیکی و تغییرات محیطی در مناطق مورد مطالعه کمک مؤثری نماید؛ مدلهای فضای حالت این مزیت را دارند که سامانه را بهصورت انعطاف پذیر و پویا مورد بررسی و تحلیل قرار دهند. لذا این مقاله در نظر دارد بهکمک روش ترکیبی بهبهبود راندمان مدلهای سری زمانی فضای حالت Kalman Filter، ETS، BATS،TBATS بپردازد و با مقایسه با مدل باکس-جنکینز نشان دهد کدامیک از این مدلها، قابلیت بهتری در شبیهسازی دبی ماهانه رودخانه دارد. این مقایسه در سه ایستگاه آبسنجی سپیددشت سزار، تنگپنج بختیاری و تلهزنگ در حوضه آبریز دز واقع در استان خوزستان از سال 1386تا 1399 انجام شده است. نتایج این بررسی براساس معیارهای ارزیابی مدل(RMSE، MAE و R2)، نشان داد فضای حالت نسبت به مدل باکسجنکینز (کلاسیک) بهتر عمل نموده و در بین مدلهای فضای حالت، مدل سطح موضعی(فیلتر کالمن) عملکرد بهتری داشته، بهطوریکه در مرحله صحتسنجی، ایستگاه آبسنجی سپیددشت سزار 21/39 RMSE=، 79/0 R2=و در ایستگاه تنگپنج بختیاری 89/57 RMSE= ،76/0R2= و در ایستگاه تلهزنگ41/113RMSE= و 73/0R2= بدست آمد. | ||
کلیدواژهها | ||
"سری زمانی"؛ "مدل های فضای حالت"؛ "روش ترکیبی"؛ "دبی ماهانه"؛ "حوضه آبریز دز" | ||
مراجع | ||
Wu S.J., Lien H.C., Chang C.H., Shen J.C. (2012). Real-time correction of water stage forecast during rainstorm events using combination of forecast errors. Stochastic Environmental Research and Risk Assessment. 26(4),519 531. Nayak P.C., Sudheer K.P., Rangan D.M., Ramasastri K.S. (2004). A neurofuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291,52–66. El-Shafie, A., Taha, M. R., & Noureldin, A. (2007). A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam. Water resources management, 21(3), 533-556. Ngan, P. (1987). Kalman filter and its application to flow forecasting. Sun, Y., Bao, W., Valk, K., Brauer, C. C., Sumihar, J., & Weerts, A. H. (2020). Improving forecast skill of lowland hydrological models using ensemble Kalman filter and unscented Kalman filter. Water Resources Research, 56(8), e2020WR027468. Zeng, Q., Li, D., Huang, G., Xia, J., Wang, X., Zhang, Y., ... & Zhou, H. (2016). Time series analysis of temporal trends in the pertussis incidence in Mainland China from 2005 to 2016. Scientific reports, 6(1), 1-8. De Livera, A. M., Hyndman, R. J., & Snyder, R. D. (2011). Forecasting time series with complex seasonal patterns using exponential smoothing. Journal of the American statistical association, 106(496), 1513-1527. Lu, M., Lu, S., Liao, W., Lei, X., Yin, Z., & Wang, H. (2022). Research and application of parameter estimation method in hydrological model based on dual ensemble Kalman filter. Hydrology Research, 53(1), 65-84. Shen, Y., Wang, S., Zhang, B., & Zhu, J. (2022). Development of a stochastic hydrological modeling system for improving ensemble streamflow prediction. Journal of Hydrology, 608, 127683. Stefenon, S. F., Ribeiro, M. H. D. M., Nied, A., Yow, K. C., Mariani, V. C., dos Santos Coelho, L., & Seman, L. O. (2022). Time series forecasting using ensemble learning methods for emergency prevention in hydroelectric power plants with dam. Electric Power Systems Research, 202, 107584. Dong, X., Yu, Z., Cao, W., Shi, Y., & Ma, Q. (2020). A survey on ensemble learning. Frontiers of Computer Science, 14(2), 241-258. Fletcher, R. (2013). Practical methods of optimization. John Wiley & Sons. Pintelas, P., & Livieris, I. E. (2020). Special issue on ensemble learning and applications. Algorithms, 13(6), 140. Liu, B. (2009). Some research problems in uncertainty theory. Journal of Uncertain systems, 3(1), 3-10. Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140. Huang, F., Xie, G., & Xiao, R. (2009, November). Research on ensemble learning. In 2009 International Conference on Artificial Intelligence and Computational Intelligence (Vol. 3, pp. 249-252). IEEE. Dantas, T. M., & Oliveira, F. L. C. (2018). Improving time series forecasting: An approach combining bootstrap aggregation, clusters and exponential smoothing. International Journal of Forecasting, 34(4), 748-761. Bühlmann, P., & Yu, B. (2002). Analyzing bagging. The annals of Statistics, 30(4), 927-961. Bühlmann, P. (2012). Bagging, boosting and ensemble methods. In Handbook of computational statistics (pp. 985-1022). Springer, Berlin, Heidelberg. Box, G. E. P., & Jenkins, G. M. (1970). 1970: Time series analysis, forecasting and control. San Francisco: Holden-Day. Makridakis, S., & Hibon, M. (1997). ARMA models and the Box–Jenkins methodology. Journal of forecasting, 16(3), 147-163. Shumway, R. H., & Stoffer, D. S. (1982). An approach to time series smoothing and forecasting using the EM algorithm. Journal of time series analysis, 3(4), 253-264. Shumway, R. H. (1988). Applied statistical time series analysis. Prentice Hall Series in Statistics. Kalman R.E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering Transactions, 82(1), 35-45. Chan, N. H., & Palma, W. (1998). State space modeling of long-memory processes. The Annals of Statistics, 26(2), 719-740. Sharifi, M., Mohammadzadeh Shobegar, A., Radmanesh, F., & Mansouri, B. (2022). Evaluation of structural approaches to state space compared to classical in predicting precipitation time series (Dez catchment). Water and Irrigation Management, 12(1), 1-13. Durbin, J., & Koopman, S. J. (2012). Time series analysis by state space methods (Vol. 38). OUP Oxford. Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter. Shamshad, B., Khan, M. Z., & Omar, Z. (2019). Modeling and forecasting weather parameters using ANN-MLP, ARIMA and ETS model: a case study for Lahore, Pakistan. Journal of Applied Statistics, 5, 388. Jain, G., & Mallick, B. (2017). A study of time series models ARIMA and ETS. Available at SSRN 2898968. Alakkari, K. M., Mishra, P., Rawat, D., Abotaleb, M., & Ghazi, A. M. (2022). Using ETS State Space Model for forecasting on third wave on COVID19 in India. Abd Rahman, N., Yusop, Z., Åžen, Z., Taher, S., & Kane, I. L. (2017). Mitigation of time series approach on climate change adaptation on rainfall of Wadi Al-Aqiq, Madinah, Saudi Arabia. Jurnal Teknologi, 79(5). Hyndman, R., Koehler, A. B., Ord, J. K., & Snyder, R. D. (2008). Forecasting with exponential smoothing: the state space approach. Springer Science & Business Media. Gos, M., Krzyszczak, J., Baranowski, P., Murat, M., & Malinowska, I. (2020). Combined TBATS and SVM model of minimum and maximum air temperatures applied to wheat yield prediction at different locations in Europe. Agricultural and Forest Meteorology, 281, 107827. De Livera, A. M. (2010). Automatic forecasting with a modified exponential smoothing state space framework. Monash Econometrics and Business Statistics Working Papers, 10(10), 6. Badr, A., Makarovskikh, T., Mishra, P., Abotaleb, M., Al Khatib, A. M. G., Karakaya, K., ... & Attal, E. (2021). Modelling and forecasting of web traffic using Holt's linear, bats and TBATS models. J. Math. Comput. Sci., 11(4), 3887-3915. Naim, I., Mahara, T., & Idrisi, A. R. (2018). Effective short-term forecasting for daily time series with complex seasonal patterns. Procedia computer science, 132, 1832-1841. Zachary, H., Asghar, Z., & Oroza, C. A. (2020). Multi-step Weekly Average Forecasting of Reservoir Storage Volume Using Deep Learning. Earth and Space Science Open Archive ESSOAr. Huang, K., Zhang, J., & Song, Y. (2022, May). Application of machine learning models based on ANN and GA coupling algorithms in hydrological runoff simulation. In International Conference on Electronic Information Engineering, Big Data, and Computer Technology (EIBDCT 2022) (Vol. 12256, pp. 373-380). Yeh, W.W.-G.; Yoon, Y.S. (1981). Aquifer parameter identification with optimum dimension in parameterization. Water Resources Research. 17, 664–672. Kotsiantis, S. B., Zaharakis, I. D., & Pintelas, P. E. (2006). Machine learning: a review of classification and combining techniques. Artificial Intelligence Review, 26(3), 159-190. Ribeiro, M. H. D. M., & dos Santos Coelho, L. (2020). Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series. Applied Soft Computing, 86, 105837. Gastinger, J., Nicolas, S., Stepić, D., Schmidt, M., & Schülke, A. (2021, July). A study on ensemble learning for time series forecasting and the need for meta-learning. In 2021 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE. Murray, S. A. (2018). The importance of ensemble techniques for operational space weather forecasting. Space Weather, 16(7), 777-783. Seising, R., & Allende-Cid, H. (Eds.). (2017). Claudio Moraga: A Passion for Multi-Valued Logic and Soft Computing. Springer International Publishing. Wideroos, K. (2021). Improving time series forecasting accuracy by ensemble methods and time series features (Master's thesis). Li, Y., Liang, Z., Hu, Y., Li, B., Xu, B., & Wang, D. (2020). A multi-model integration method for monthly streamflow prediction: modified stacking ensemble strategy. Journal of Hydroinformatics, 22(2), 310-326. Rajesh, M., & Rehana, S. (2021). Prediction of river water temperature using machine learning algorithms: a tropical river system of India. Journal of Hydroinformatics, 23(3), 605-626. Wang, W. C., Chau, K. W., Xu, D. M., & Chen, X. Y. (2015). Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resources Management, 29(8), 2655-2675. Ardabili, S., Mosavi, A., & Várkonyi-Kóczy, A. R. (2019, September). Advances in machine learning modeling reviewing hybrid and ensemble methods. In International Conference on Global Research and Education (pp. 215-227). Springer, Cham. Boukharouba, K., & Kettab, A. (2016). Comparison of prediction performances between Box–Jenkins and Kalman filter models––Case of annual and monthly sreamflows in Algeria. Desalination and Water Treatment, 57(36), 17095-17103. Ahsan, M., & O'Connor, K. M. (1994). A reappraisal of the Kalman filtering technique, as applied in river flow forecasting. Journal of Hydrology, 161(1-4), 197-226. Li, Z., Xu, X., Liu, M., Li, X., Zhang, R., Wang, K., & Xu, C. (2017). State-space prediction of spring discharge in a karst catchment in southwest China. Journal of Hydrology, 549, 264-276. Li, Z., Xu, X., Xu, C., Liu, M., Wang, K., & Yi, R. (2017). Monthly sediment discharge changes and estimates in a typical karst catchment of southwest China. Journal of Hydrology, 555, 95-107. Adubisi, O. D., David, I. J., Eka, O., & Uduma, A. E. (2019). State space and Box-Jenkins approaches: a comparison of models prediction performance in finance. International Journal of Data Science, 4(3), 181-195. Husin, W. Z. W., Afdzal, A. S., Azmi, N. L. H., & Hamadi, S. A. T. S. (2021, November). Box-Jenkins and State Space Model in Forecasting Malaysia Road Accident Cases. In Journal of Physics: Conference Series (Vol. 2084, No. 1, p. 012005). IOP Publishing | ||
آمار تعداد مشاهده مقاله: 185 تعداد دریافت فایل اصل مقاله: 135 |