- Gerbens-Leenes PW, Mekonnen MM, Hoekstra AY. The water footprint of poultry, pork and beef: a comparative study in different countries and production systems. Water Resour. 2012; 25(36):1-2.
- Hoekstra AY, Hung PQ. Virtual Water Trade: a Quantifcation of Virtual Water Flows between Nations in Relation to International Crop Trade. Value of Water Research Report Series. 2002; No. 11. UNESCO-IHE, Delft, the Netherlands.
- Fu H, Chen Y, Yang X, Di J, Xu M, & Zhang B. Water resource potential for large-scale sweet sorghum production as bioenergy feedstock in Northern China. Science of the Total Environment. 2019; 653:758-764.
- Mancosu N, Snyder R. L, Kyriakakis G, & Spano D.Water scarcity and future challenges for food production. Water. 2015; 7(3): 975-992.
- Hoekstra AY, & Hung PQ. Globalisation of water resources: international virtual water flows in relation to crop trade. Global environmental change. 2005; 15(1): 45-56.
- Hoekstra AY, Chapagain AK. The water footprints of Morocco and the Netherlands: global water use as a result of domestic consumption of agricultural commodities. Ecol. Econ. 2007; 64 (1): 143–151.
- Chapagain AK, Hoekstra AY, Savenije HHG, Gautam R. The water footprint of cotton consumption: an assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecol. Econ. 2006; 60: 186-203.
- Cao X, Wu P T, Wang Y B, & Zhao XN. Assessing blue and green water utilisation in wheat production of China from the perspectives of water footprint and total water use. Hydrology and Earth System Sciences. 2014; 18(8): 3165-3178.
- Zhai SX, Quan T, Ma X, Zhang R, Ji C, Zhang T, Hong J.Impact-oriented water footprint assessment of wheat production in China. Science of the Total Environment. 2019; 689: 90–98.
- Zhang Y, Huang K, Ridoutt BG, Yu Y. Comparing volumetric and impact-oriented water footprint indicators: case study of agricultural production in Lake Dianchi Basin, China. Ecol. Indic. 2018; 87: 14–21.
- Bazrafshan O, Zamani H, Etedali H R, & Dehghanpir S. Assessment of citrus water footprint components and impact of climatic and nonclimatic factors on them. Scientia Horticulturae. 2019; 250: 344-351.
- Ababaei B, & Etedali H R. Water footprint assessment of main cereals in Iran. Agricultural water management. 2017; 179: 401-411.
- Bazrafshan O, Ramezani Etedali H, Gerkani Nezhad Moshizi Z, Shamili, M. Virtual water trade and water footprint accounting of Saffron production in Iran, Agricultural Water Management. 2019; 213: 368–374.
- Falkenmark M. The greatest water problem: the inability to link environmental security, water security and food security. International Journal of Water resources development. 2001; 17(4): 539-554.
- Sullivan C.Calculating a water poverty index. World Dev. 2002; 30 (7): 1195–1210.
- Vanham D, Bidoglio G. A review on the indicator water footprint for the EU28. Ecol. Indic. 2013; 26: 61–75.
- Liu J, Yang H, Gosling SN, Kummu M, Flörke M, Pfister S, & Oki T. Water scarcity assessments in the past, present, and future. Earth's future. 2017; 5(6): 545-559.
- Hoekstra AY, Chapagain AK. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. 2011; 70: 749–758.
- Cao X, Wu M, Guo X, Zheng Y, Gong Y, Wu N, & Wang W.Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework. Science of the Total Environment. 2017; 609: 587-597.
- Cao X, Huang X, Huang H, Liu J, Guo X, Wang W, & She D.Changes and driving mechanism of water footprint scarcity in crop production: A study of Jiangsu Province, China. Ecological Indicators. 2018; 95: 444-454.
- Hadi M, Jalili M, Heris A. Assessing the Wheat Yield under Irrigated and Rainfed Farming and Evaluating the Possibility of Supplemental Irrigation of Rainfed by Water Stored in Deficit Irrigated Farming. 2017; 3 (11): 403-411. [Persian]
- Nasrabadi T, Arab E, Pourasghar F. Investigating the proportion of wheat planted area in Iran with wheat yield and water demand by focusing on virtual water approach. 2015; 3 (41): 529 -543. [Persian]
- Iran Agriculture Bulletin. Ministry of Agriculture Jihad, Agriculture Jihad Press, Tehran. 2021. [Persian]
- Sheibani S, Ghanbari A, Asghari pour MR. Determining the Optimal Water Use Efficiency in Wheat Production Sustainability. 2017; 2 (27): 1-18. [Persian]
- Allen, J.A. Virtual water: a strategic resource global solution to regional deficits. Ground Water.1998; 36: 545–546.
- Raskin, P, Gleick, P, Kirshen, P, Pontius, G, & Strzepek, K. Water futures: assessment of long-range patterns and problems. Comprehensive assessment of the freshwater resources of the world. 1997; SEI.
- Pfister, S, Koehler, A, Hellweg, S. Assessing the environmental impacts of freshwater consumption in LCA, Environ. Sci. 2009; 43: 4098–4104.
- Arabi Yazdi, A, Alizadeh, A, Nairizi S, 2009. Study of food security based on the concept of virtual water trade and ecological water foot print (Case study: Khorasan Razavi Province). Journal Of Agroecology, 1(1), -. doi: 10.22067/jag.v1i1.2649.
|