- Chaudhry and M. Yousaf, Consensus Algorithms in Blockchain: Comparative Analysis, Challenges and Opportunities. 2018.
- S. Ferdous, M. Chowdhury, M. Hoque, and A. Colman, Blockchain Consensus Algorithms: A Survey. 2020.
- Entezari, A. Aslani, R. Zahedi, and Y. Noorollahi, “Artificial intelligence and machine learning in energy systems: A bibliographic perspective,” Energy Strateg. Rev., vol. 45, p. 101017, 2023, doi: https://doi.org/10.1016/j.esr.2022.101017.
- Izanloo, A. Aslani, and R. Zahedi, “Development of a Machine learning assessment method for renewable energy investment decision making,” Appl. Energy, vol. 327, p. 120096, 2022, doi: https://doi.org/10.1016/j.apenergy.2022.120096.
- NordPool, “NordPool electricity market,” NordPool, 2021. .
- Bye and E. Hope, “Deregulation of electricity markets—The Norwegian experience,” Econ. Polit. Wkly., vol. 40, pp. 5269–5278, Oct. 2005, doi: 10.2307/4417519.
- Rodigari, “The reforms effect on consumer prices in the electricity sector in Sweden,” 2016.
- Witte and A. Moreno, “Charting the Diffusion of Power Sector Reforms across the Developing World,” 2017.
- Hajibashi et al., “Iran’s electricity market seasonal report,” Tehran, 2019.
- Shepherd, “How Many Businesses Accept Bitcoin? Full List (2021),” Fundera, 2020. .
- Andoni et al., “Blockchain technology in the energy sector : A systematic review of challenges and opportunities,” Renew. Sustain. Energy Rev., vol. 100, no. February 2018, pp. 143–174, 2019, doi: 10.1016/j.rser.2018.10.014.
- M. Forootan, I. Larki, R. Zahedi, and A. Ahmadi, “Machine Learning and Deep Learning in Energy Systems: A Review,” Sustainability, vol. 14, no. 8. 2022, doi: 10.3390/su14084832.
- Ghoshchi, R. Zahedi, Z. Pour, and A. Ahmadi, “Machine Learning Theory in Building Energy Modeling and Optimization: A Bibliometric Analysis,” Int. J. Green Energy, p. 4, Sep. 2022, doi: 10.53964/jmge.2022004.
- Nguyen, W. Peng, P. Sokolowski, and D. Alahakoon, “Optimizing Rooftop Photovoltaic Distributed Generation with Battery Storage for Peer-to-Peer Energy Trading,” Appl. Energy, no. May 2019, 2018, doi: 10.1016/j.apenergy.2018.07.042.
- Ghodusinejad MH, Noorollahi Y, Zahedi R. Optimal site selection and sizing of solar EV charge stations. Journal of Energy Storage. 2022;56:105904.
- Pourrahmani et al., “The applications of Internet of Things in the automotive industry: A review of the batteries, fuel cells, and engines,” Internet of Things, vol. 19, p. 100579, 2022, doi: https://doi.org/10.1016/j.iot.2022.100579.
- Zahedi, M. hasan Ghodusinejad, A. Aslani, and C. Hachem-Vermette, “Modelling community-scale renewable energy and electric vehicle management for cold-climate regions using machine learning,” Energy Strateg. Rev., vol. 43, p. 100930, 2022, doi: https://doi.org/10.1016/j.esr.2022.100930.
- Zhang, J. Wu, C. Long, and M. Cheng, “Review of Existing Peer-to-Peer Energy Trading Projects,” Energy Procedia, vol. 105, pp. 2563–2568, 2017, doi: 10.1016/j.egypro.2017.03.737.
- Park and T. Yong, “Comparative review and discussion on P2P electricity trading,” Energy Procedia, vol. 128, pp. 3–9, 2017, doi: 10.1016/j.egypro.2017.09.003.
- Abrishambaf, F. Lezama, P. Faria, and Z. Vale, “Towards transactive energy systems : An analysis on current trends,” Energy Strateg. Rev., vol. 26, p. 100418, 2019, doi: 10.1016/j.esr.2019.100418.
- Mengelkamp, J. Gärttner, K. Rock, S. Kessler, L. Orsini, and C. Weinhardt, “Designing microgrid energy markets: A case study: The Brooklyn Microgrid,” Appl. Energy, vol. 210, pp. 870–880, 2018, doi: https://doi.org/10.1016/j.apenergy.2017.06.054.
- Agung, G. Agung, and R. Handayani, “Blockchain for smart grid,” J. King Saud Univ. - Comput. Inf. Sci., no. xxxx, 2020, doi: 10.1016/j.jksuci.2020.01.002.
- N. Luke, S. J. Lee, Z. Pekarek, and A. Dimitrova, “Blockchain in Electricity : a Critical Review of Progress to Date,” 2018.
- J. Alsunaidi and F. A. Alhaidari, “A Survey of Consensus Algorithms for Blockchain Technology,” in 2019 International Conference on Computer and Information Sciences (ICCIS), Apr. 2019, pp. 1–6, doi: 10.1109/ICCISci.2019.8716424.
- Statista, “number of daily cryptocurrency transactions by type,” Statista, 2020.
|