تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,036 |
تعداد مشاهده مقاله | 125,505,093 |
تعداد دریافت فایل اصل مقاله | 98,769,207 |
تأثیر جریان شکافنده بر دانهبندی رسوبات بستر دریا | ||
فیزیک زمین و فضا | ||
مقاله 7، دوره 49، شماره 1، خرداد 1402، صفحه 119-135 اصل مقاله (1.55 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2023.336922.1007396 | ||
نویسندگان | ||
فاطمه دهباشی1؛ سید علی آزرم سا* 2 | ||
1گروه فیزیک دریا، دانشکده علوم دریایی، دانشگاه تربیت مدرس، نور، ایران. رایانامه: fatemeh.dehbashi@modares.ac.ir | ||
2نویسنده مسئول، گروه فیزیک دریا، دانشکده علوم دریایی، دانشگاه تربیت مدرس، نور، ایران. رایانامه: azarmsaa@modares.ac.ir | ||
چکیده | ||
جریان شکافنده از جمله مهمترین پدیدههای مطرح در مناطق ساحلی است که علاوه بر تأثیرات فیزیکی قابلتوجه در منطقه ساحلی، عامل بخش قابلتوجهی از مرگومیرها و حوادث دریایی است. به همین دلیل این جریان توسط گروهی از محققان بینالمللی از جنبههای مختلف موردتوجه قرار گرفته است. در این تحقیق سعی شده است با نمونهبرداری از رسوبات کف کانال جریان شکافنده و محیط اطراف آن در سواحل دریای خزر، تأثیر جریان شکافنده بر دانهبندی این رسوبات مشخص شود. نمونهبرداری بهصورت ماهانه در دو فصل زمستان و بهار انجام شد. برای مقایسه ویژگیهای رسوب در کانال ریپ و پشتههای اطراف آن از آزمون تی تست غیر زوجی استفاده شد و اختلاف معنی داری در سطح 95% مشاهده شد. نتایج گرانولومتری نشان داد که تفکیک داده ها به دو فصل زمستان و بهار نشاندهندهی تفاوت معنیدار قطر میانه، میانگین اندازه ذرات و چولگی توزیع ذرات رسوب در کانال جریان شکافنده نسبت به محیط اطراف آن در فصل بهار شد. در فصل زمستان احتمالاً به دلیل آشفتگی آبوهوا و تلاطم در جریانات دریایی و امواج مرتفع حاصل از وزش بادهای شدید تفاوت مقدار این پارامترها در داخل کانال شکافنده و محیط اطراف آن معنیدار نبوده است. | ||
کلیدواژهها | ||
جریان شکافنده؛ کانال ریپ؛ گرانولومتری؛ منطقه ساحلی؛ دریای خزر | ||
مراجع | ||
Aagaard, T., Greenwood, B., & Nielsen, J. (1997). Mean currents and sediment transport in a rip channel.Marine Geology, 140(1-2), 25-45. Azarmsa, S. A. (2002). Dynamics of marine sands, Tarbiat Modares University Publications, 266 p. Azarmsa, S. A. (2019). An Introduction to Wind Induced Water Waves, Tarbiat Modares University Press, 348 p. Bong, T., Son, Y., & Kim, K.-S. (2019). Experimental modeling of suspended sediment transport considering the flow rate and grain size. Journal of Coastal Research, 35(3), 637–647. Brannstrom, C., Trimble, S., Santos, A., Brown, H. L., & Houser, C. (2014). Perception of the rip current hazard on Galveston Island and North Padre Island, Texas, USA. Nat. Hazards, 72, 1123-1138. Brander, R.W. (1999a). Sediment transport in low-energy rip current systems. Journal of coastal research, 839-849. Brander, R.W. (1999b). Field observations on the morphodynamic evolution of a low-energy rip current system. Marine geology, 157(3-4), 199-217. Brighton, B., Sherker, S., Brander, R., Thompson, M., & Bradstreet, A. (2013). Rip current related drowning deaths and rescues in Australia 2004–2011. Nat. Hazards Earth Syst. Sci., 13, 1069-1075. Castelle, B., Scott, T., Brander, R. W., & McCarroll, R. J. (2016). Rip current types, circulation and hazard. Earth-Sci. Rev., 163, 1-21. Dong, P., Chen, Y., & Chen, S. (2015). Sediment Size Effects on Rip Channel Dynamics. Coastal Engineering, 99, 124-135. Folk, R.L., & Ward, W.C. (1957). Brazos River bar: a study in the Significance of Grain Size Parameters. Journal of Sedimentary Petrology, 27, 3-26. Gallop, S.L., Woodward, E., Brander, R.W. & Pitman, S.J. (2016). Perceptions of rip current myths from the central south coast of England. Ocean & Coastal Management, 119, 14-20. Haidari Nasheli, Z., & Azarmsa, S.A. (2006). Potential occurrence and effects of rip current on the coasts of Mazandaran province, Master’s thesis, Tarbiat modares university. Kabiri-Samani, A.R., Aghaee-Tarazjani, J., Borghei, S.M., & Jeng, D.S. (2011). Application of Neural Networks and Fuzzy Logic Models to Longshore Sediment Transport, Applied Soft Computing, 11(2), 2880-2887. Kumar, S.V.V., & Prassad, K.V.S.R. (2014). Rip current-related fatalities in India: a new predictive risk scale for forecasting rip currents. Natural Hazards, 70(1), 313-335. Kunte, P.D. (2008). Sediment Concentration and Bed Form Structures of Gulf of Cambay from Remote Sensing. International Journal of Remote Sensing, 29(8), 2169-2182. Linares, A., Wu, C.H., Bechle, A.J., Anderson, E.J., & Kristovich, D.A.R. (2019). Unexpected rip currents induced by a meteotsunami. Scientific Reports, 9(1), 2105. Doi:org/10.1038/s41598-019-38716-2. MacMahan, J.H., Thornton, E.B., Stanton, T.P., & Reniers, A.J. (2005). RIPEX: Observations of a rip current system. Marine Geology, 218(1-4), 113-134. McLaren, P., 1981, An Introduction of Trends in Grain Size Measures. Journal of Sedimentary Petrology. 51(2), 611-624. Muralidharan, J., Ganesh Kumar, B., & Kunte, P.D. (2015). Sediment Transport Study along Gulf of Kachchh – A Numerical and Geospatial approach. International Journal of Applied Engineering Research, 10(55), 4291-6. Poppe, L. J., Eliason, A. H., Fredericks, J. J., Rendigs, R. R., Blackwood, D., & Polloni, C. F., 2000, Grain-size Analysis of Marine Sediments: Methodology and Data Processing, US Geological survey open-file report, P. 358. Rudeh, H., Lorestani, Gh., Etemadi, F., Valikhani, S., 2014, Dynamic Simulation of Waves and Sand Transport on the Coast of the Caspian Sea. Quantitative geomorphological Researches, 2(2), 1-18. Sharaki, M., & Azarmsa, S. A. (2019). A Field Study of Breaking Zone Width, Breaker Height, and Number of Breakings in the East Coast of Noor. Marine Eng., 15(13), 113-120. Shushtarizadeh Naseri, A., & Tavakoli, M. (2013). Rip Current, Recognition, Issues and Approaches, Bandar, 203, 32-40. Short, A.D. (1985). Rip-current type, spacing and persistence, Narrabeen Beach, Australia. Marine geology, 65(1-2), 47-71. Siuf Jahromi M., & Ghaderi D. (2014). Rip current in the beach and its hazards. First National Conference in Marine Sciences, Bandarabbas, 1-13. Srivastava, A.K., Ingle, P.S., Lunge, H.S., & Khare, N. (2012). Grain-size characteristics of deposits derived from different glacigenic environments of the Schirmacher Oasis, East Antarctica. Geologos, 18(4), 251-266. Thornton, E.B., MacMahan, J., & Sallenger Jr, A.H. (2007). Rip currents, mega-cusps, and eroding dunes. Marine geology, 240(1-4), 151-167. Thorpe, A., Miles, J., Masselink, G., Russell, P., Scott, T., & Austin, M. (2013). Suspended Sediment Transport in Rip Currents on a Macrotidal Beach. Journal of Coastal Research, 65, 1880-1885. Valipour, A., Karimi Khaniki, A., & Bidokhti, A.A. (2014). Investigating the reactions of rip current pattern and sediment transport in rip channel against changes of bed parameters using numerical simulations. Indian Journal of Geo-Marine Sciences, 43(5), 831-840. Woodward, E.M. (2015), Rip currents in the UK: incident analysis, public awareness and education. School of Marine Sciences and Engineering, Faculty of Science and Environment, UK, PhD Thesis. Zhang, X., Ji, Y., Yang, Z., Wang, Z., Liu, D., & Jia, P. (2016). End member inversion of surface sediment grain size in the South Yellow Sea and its implications for dynamic sedimentary environments. Science China Earth Sciences, 59(2), 258-267. Zare Chahuki, M.A. (2010), Data Analysis in Natural Resources Research using SPSS Software, Jehad-Daneshgahi, Tehran University Press, 310 p. | ||
آمار تعداد مشاهده مقاله: 765 تعداد دریافت فایل اصل مقاله: 558 |