تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,099,629 |
تعداد دریافت فایل اصل مقاله | 97,207,027 |
Optimization of Sulphate-Reducing Bacteria for Treatment of Heavy Metals-Containing Laboratory Wastewater on Anaerobic Reactor | ||
Pollution | ||
دوره 9، شماره 2، تیر 2023، صفحه 545-556 اصل مقاله (937.02 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2022.347642.1588 | ||
نویسندگان | ||
Wayan Budiarsa Suyasa* 1؛ Gede Adi Wiguna Sudiartha2؛ Gusti Ayu Sri Kunti Pancadewi3 | ||
1Environmental Chemistry Laboratory, Faculty of Math and Sciences, Udayana University, Jimbaran, Badung-Bali, Indonesia | ||
2Environmental Engineering Study Programme, Faculty of Engineering, Udayana University, Jimbaran, Badung-Bali, Indonesia | ||
3Chemistry Study Program, Faculty of Math and Sciences, Udayana University, Jimbaran, Badung-Bali, Indonesia | ||
چکیده | ||
Laboratory wastewater is categorized as hazardous waste that should not be released into the environment since it poses a serious threat to environmental safety. In the present study, the use of Sulphate-Reducing Bacteria (SRB) colonies in an anaerobic reactor to treat heavy metals-containing laboratory wastewater was examined. SRB was initially cultivated with the treatment of fermented compost and Postgate's medium before being attached to the laboratory-size anaerobic reactor to treat laboratory waste containing heavy metal. Within the 15 days of initial incubation under the room temperature of 28 °C, we discovered that SRB optimally grew on the medium with the composition of 5% Postgate B solution, 30% fermented compost liquid, and 5% active suspension liquid, with a total population of cell colonies was 1.2 x 105 CFU/ml. After SRB colonies from the most optimum medium were affixed to the reactor, the reactor attained 89% of lead (Pb) removal, 69.78% of iron (Fe) removal, and 48.93% of copper (Cu) removal for 15 days treatment periods. On the 21st days of treatment time, the removal efficiency increased significantly to 91.57%, 78.09%, and 83.56% of Pb, Fe, and Cu removed, respectively. | ||
کلیدواژهها | ||
Anaerobic reactor؛ Heavy metals؛ Laboratory wastewater؛ Sulphate-reducing bacteria | ||
مراجع | ||
Amanze, C., Zheng, X., Man, M., Yu, Z., Ai, C., Wu, X., Xiao, S., Xia, M., Yu, R., Wu, X., Shen, L., Liu, Y., Li, J., Dolgor, E. and Zeng, W. (2022). Recovery of heavy metals from industrial wastewater using bioelectrochemical system inoculated with novel Castellaniella species. Environ. Res., 205; 112467. Ayangbenro, A. S., Olanrewaju, O. S. and Babalola, O. O. (2018). Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Front. Microbiol., 9; 1986. Bitton, G. (2010). Wastewater Microbiology: Fourth Edition. Wastewater Microbiol. Fourth Ed. (New York: Wiley). Gopi Kiran, M., Pakshirajan, K. and Das, G. (2018). Heavy metal removal from aqueous solution using sodium alginate immobilized sulfate reducing bacteria: Mechanism and process optimization. J. Environ. Manage., 218; 486 - 496. Hussain, A., Hasan, A., Javid, A. and Qazi, J. I. (2016). Exploited application of sulfate-reducing bacteria for concomitant treatment of metallic and non-metallic wastes: a mini review. 3 Biotech., 6; 119. Jing, X., Yang, J. and Wang, T. (2018). Effects of Salinity on Herbicide Lactofen Residues in Soil. Water. Air. Soil Pollut., 229; 3. Jong, T. and Parry, D. L. (2003). Removal of sulfate and heavy metals by sulfate reducing bacteria in short-term bench scale upflow anaerobic packed bed reactor runs. Water Res., 37(14); 3379-3389. Ju, F. and Zhang, T. (2015). Bacterial assembly and temporal dynamics in activated sludge of a full-scale municipal wastewater treatment plant. ISME J., 9; 683-695. Keller, K. L. and Wall, J. D. (2011). Genetics and molecular biology of the electron flow for sulfate respiration in Desulfovibrio. Front. Microbiol., 2; 135. Kieu, T. Q. H., Nguyen, T. Y., Dang, T. Y., Nguyen, T. B., Vuong, T. N. and Horn, H. (2015). Optimization of sulfide production by an indigenous consortium of sulfate-reducing bacteria for the treatment of lead-contaminated wastewater. Bioprocess Biosyst. Eng., 38; 2003-2011. Kinuthia, G. K., Ngure, V., Beti, D., Lugalia, R., Wangila, A. and Kamau, L. (2020). Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Sci. Rep., 10; 8434. Liu, Z., Li, L., Li, Z. and Tian, X. (2018). Removal of sulfate and heavy metals by sulfate-reducing bacteria in an expanded granular sludge bed reactor. Environ. Technol. (United Kingdom)., 39(14); 1814-1822. Mahendra, S. and Alvarez-Cohen, L. (2006). Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria. Environ. Sci. Technol., 40(17); 5435-5442. Mansourri, G. and Madani, M. (2016). Examination of the Level of Heavy Metals in Wastewater of Bandar Abbas Wastewater Treatment Plant. Open J. Ecol., 6(2); 55-61. Mosivand, S., Kazeminezhad, I. and Fathabad, S. P. (2019). Easy, fast, and efficient removal of heavy metals from laboratory and real wastewater using electrocrystalized iron nanostructures. Microchem. J., 146; 534-543. Naushad, M., Mittal, A., Rathore, M. and Gupta, V. (2015). Ion-exchange kinetic studies for Cd(II), Co(II), Cu(II), and Pb(II) metal ions over a composite cation exchanger. Desalin. Water Treat., 54(10); 2883-2890. Neria-González, M. I. and Aguilar-López, R. (2021). Heavy Metal Removal Processes by Sulfate-Reducing Bacteria.(In R. Prasad (Eds.), Environmental pollution and remediation (pp. 367-394). Singapore: Springer.) Obaid, S. S., Gaikwad, D. K., Sayyed, M. I., Al-Rashdi, K. and Pawar, P. P. (2018). Heavy metal ions removal from waste water bythe natural zeolites. Mater. Today Proc., 5(9); 17930-17934. Pinto, P. X., Al-Abed, S. R. and McKernan, J. (2018). Comparison of the efficiency of chitinous and ligneous substrates in metal and sulfate removal from mining-influenced water. J. Environ. Manage., 227; 321-328. Qiu, R., Zhao, B., Liu, J., Huang, X., Li, Q., Brewer, E., Wang, S. and Shi, N. (2009). Sulfate reduction and copper precipitation by a Citrobacter sp. isolated from a mining area. J. Hazard. Mater., 164(2-3); 1310-1315. Santini, T. C., Degens, B. P. and Rate, A. W. (2010). Organic substrates in bioremediation of acidic saline drainage waters by sulfate-reducing bacteria. Water. Air. Soil Pollut., 209; 251-268. Seong, J. P., Jerng, C. Y., Shin, K. S., Eung, H. K., Yim, S., Cho, Y. J., Gi, M. S., Lee, D. G., Seung, B. K., Lee, D. U., Woo, S. H. and Koopman, B. (2007). Dominance of endospore-forming bacteria on a rotating activated bacillus contactor biofilm for advanced wastewater treatment. J. Microbiol., 45(2); 113-121. Soliman, N. K. and Moustafa, A. F. (2020). Industrial solid waste for heavy metals adsorption features and challenges; a review. J. Mater. Res. Technol., 9(5); 10235-10253. Sudiartha, G. A. W., Imai, T. and Hung, Y.-T. (2022). Effects of Stepwise Temperature Shifts in Anaerobic Digestion for Treating Municipal Wastewater Sludge: A Genomic Study. Int. J. Environ. Res. Public Health, 19; 5728. Tasaki, M., Kamagata, Y., Nakamura, K., Okamura, K. and Minami, K. (1993). Acetogenesis from pyruvate by Desulfotomaculum thermobenzoicum and differences in pyruvate metabolism among three sulfate-reducing bacteria in the absence of sulfate . FEMS Microbiol. Lett., 106(3); 259-263. Wang, F., Peng, S., Fan, L. and Li, Y. (2022). Improved sulfate reduction efficiency of sulfate-reducing bacteria in sulfate-rich systems by acclimatization and multiple-grouting. Alexandria Eng. J., 61; 9993–10005. Wang, Haixia, Zhang, M., Lv, Q., Xue, J., Yang, J. and Han, X. (2022). Effective co-treatment of synthetic acid mine drainage and domestic sewage using multi-unit passive treatment system supplemented with silage fermentation broth as carbon source. J. Environ. Manage., 310; 114803. Wang, Huawei, Chen, F., Mu, S., Zhang, D., Pan, X., Lee, D. J. and Chang, J. S. (2013). Removal of antimony (Sb(V)) from Sb mine drainage: Biological sulfate reduction and sulfide oxidation-precipitation. Bioresour. Technol., 146; 799-802. Xu, P., Zeng, G., Huang, D., Hu, S., Feng, C., Lai, C., Zhao, M., Huang, C., Li, N., Wei, Z. and Xie, G. (2013). Synthesis of iron oxide nanoparticles and their application in Phanerochaete chrysosporium immobilization for Pb(II) removal. Colloids Surfaces A Physicochem. Eng. Asp., 419; 147-155. Xu, Y. N. and Chen, Y. (2020). Advances in heavy metal removal by sulfate-reducing bacteria. Water Sci. Technol., 81(9); 1797-1827. Yan, J., Ye, W., Jian, Z., Xie, J., Zhong, K., Wang, S., Hu, H., Chen, Z., Wen, H. and Zhang, H. (2018). Enhanced sulfate and metal removal by reduced graphene oxide self-assembled Enterococcus avium sulfate-reducing bacteria particles. Bioresour. Technol., 266; 447-453. Zhang, M. and Wang, H. (2014). Biological treatment of acidic coal refuse using sulphate-reducing bacteria with chicken manure as carbon source. Environ. Technol. (United Kingdom)., 35(23); 2957-2955. Zhang, M. and Wang, H. (2016). Preparation of immobilized sulfate reducing bacteria (SRB) granules for effective bioremediation of acid mine drainage and bacterial community analysis. Miner. Eng., 92; 63-71. Zhang, M., Wang, H. and1 Han, X. (2016). Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment. Chemosphere., 154; 215-223. | ||
آمار تعداد مشاهده مقاله: 442 تعداد دریافت فایل اصل مقاله: 867 |