تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,085,986 |
تعداد دریافت فایل اصل مقاله | 97,189,502 |
برآورد تابش خورشیدی با کاربرد شبکه عصبی مصنوعی بهینهسازی شده با الگوریتم ژنتیک و استفاده از پارامترهای هواشناسی | ||
تحقیقات آب و خاک ایران | ||
دوره 53، شماره 7، مهر 1401، صفحه 1545-1562 اصل مقاله (2.63 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2022.334806.669144 | ||
نویسندگان | ||
سجاد هاشمی1؛ سعید صمدیان فرد* 2؛ علی اشرف صدرالدینی3 | ||
1دانشجوی دکتری، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران | ||
2عضو هیات علمی دانشگاه تبریز | ||
3استاد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران | ||
چکیده | ||
تابش خورشیدی یکی از عوامل کلیدی در زمینههای کشاورزی، هیدرولوژی و هواشناسی است و نقش اساسی در انواع فرآیندهای فیزیکی، بیولوژیکی و شیمیایی از جمله ذوب برف، تبخیر، فتوسنتز گیاه و تولید محصول ایفا میکند و برآورد دقیق این پارامتر اهمیت فراوانی دارد. بر این اساس، در این مطالعه مقادیر تابش خورشیدی روزانه با استفاده از مدلهای مختلف شبکه عصبی مصنوعی و شبکه عصبی مصنوعی بهینهسازی شده با الگوریتم ژنتیک در شش ایستگاه استان اردبیل شامل اردبیل، بیلهسوار، سرعین، گرمی، مشگین شهر و نیر تخمین زده شد. دادههای استفاده شده در این تحقیق بیشینه، کمینه و میانگین دما، رطوبت نسبی و سرعت باد ایستگاههای مذکور در بازه زمانی دو ساله (2018-2017) میباشند که در هشت ترکیب مختلف بهعنوان دادههای ورودی مدلها به کار گرفته شدهاند. همچنین از شاخصهای آماری ضریب همبستگی، جذر میانگین مربعات خطا، شاخص ویلموت، راندمان کلینگ-گاپتا و دیاگرام تیلور برای مقایسه نتایج بهدستآمده بهره گرفته شده است. بهطورکلی نتایج بهدستآمده نشان داد که در روش شبکه عصبی مصنوعی، مدلهای ایستگاه بیلهسوار و در روش شبکه عصبی مصنوعی-الگوریتم ژنتیک مدلهای ایستگاه اردبیل دقیقترین نتایج را ثبت کردند. همچنین مدل MLP-VIIIدر ایستگاه بیلهسوار با دارا بودن ضریب همبستگی 856/0، جذر میانگین مربعات خطای 319/0 (مگاژول بر متر مربع در روز)، راندمان کلینگ-گاپتا 659/0 و شاخص ویلموت 893/0 بهترین عملکرد را در بین مدلهای به کار گرفته شده دارد. در نتیجه، استفاده از شبکه عصبی مصنوعی بهینهسازی شده با الگوریتم ژنتیک در برآورد هر چه دقیقتر تابش خورشیدی توصیه میگردد. | ||
کلیدواژهها | ||
انرژی خورشیدی؛ بهینهسازی؛ راندمان؛ کشاورزی؛ هوش مصنوعی | ||
مراجع | ||
Agbulut, U., Gurel, A.E., and Bicen, Y. (2021). Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison. Renewable and Sustainable Energy Reviews. 135, 110114. Allen, R.G., Pereria, L.S., Raes, D., and Smith, M. (1998). Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage. Paper. No. 56. 301p. Alsina, E. F., Bortolini, M., Gamberi, M., and Regattieri, A. (2016). Artificial neural network optimisation for monthly average daily global solar radiation prediction. Energy Conversion and Management. 120, 320-329. Azadeh, A., Maghsoudi, A., and Sohrabkhani, S. (2009). An integrated artificial neural networks approach for predicting global radiation. Energy Conversion and Management. 50, 1497–1505. Bagheri Toulabi, H., Moradi, M. H., and Bagheri Toulabi, S. (2013). A novel method for predicting the total amount of solar radiation on a horizontal surface. Iranian Journal of Energy. 16(2), 61-76. (In Persian). De Souza, J.L., Nicacio, R.L., and Lima Moura, M.A. (2005). Global solar radiation measurements in Maceio, Brazil. Agricultural Water Management. 30, 1203-1220. Feng, Y., Hao, W., Li, H., Cui, N., Gong, D., and Gao, L. (2020). Machine learning models to quantify and map daily global solar radiation and photovoltaic power. Renewable and Sustainable Energy Reviews. 118, 109393. Goldberg, D.E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley Longman Publishing Co., Inc. He, C., Liu, J., Xu, F., Zhang, T., Chen, S., Sun, Z., Zheng, W., Wang, R., He, L., Feng, H., Yu, Q., He, J. (2020). Improving solar radiation estimation in China based on regional optimal combination of meteorological factors with machine learning methods. Energy Conversion and Management. 220, 113111. Holland, J.H. (1992). Genetic algorithms. Scientific American. 267, 66-72. Jiang, Y. (2009). Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models. Energy. 34, 1276-1283. Kaba, K., Sarıgul, M., Avcı, M., and Kandırmaz, H.M. (2018). Estimation of daily global solar radiation using deep learning model. Energy. 162, 126-135. Khosravi, A., Koury, R.N.N., Machado, L., and Pabon, J.J.G. (2018). Prediction of hourly solar radiation in Abu Musa Island using machine learning algorithms. Journal of Cleaner Production. 176, 63-75. Kuan, C.M., and White, H. (1994). Artificial neural networks: An econometric perspective. Econometric Reviews. 13, 1-91. Landeras, G., López, J.J., Kisi, O., and Shiri, J. (2012). Comparison of Gene Expression Programming with neuro-fuzzy and neural network computing techniques in estimating daily incoming solar radiation in the Basque Country (Northern Spain). Energy Conversion and Management. 62, 1-13. Marzo, A., Trigo-Gonzalez, M., Alonso-Montesinos, J., Martínez-Durban, M., Lopez, G., Ferrada, P., and Batlles, F.J. (2017). Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation. Renewable Energy. 113, 303–11. Menhaj, M. B. (1998). Fundamentals of Neural Networks (Computational Intelligence). (Vol. 1). Amirkabir University of Technology Press. (In Persian). Mitchell, M. (1996). An introduction to Genetic Algorithms. MIT Press, Cambridge, MA. Rahimi Khub, A., Behbahani, S. M. R., and Jamshidi, M. (2009). Evaluation of two empirical methods and artificial neural network models for estimating solar radiation reaching the ground - a case study in southeast of Tehran. Agricultural Science and Technology and Natural Resources, Soil and Water Sciences. 50, 53-62. (In Persian). Ramedani, Z., Omid, M., Keyhani, A., Shamshirband, S., and Khoshnevisan, B. (2014). Potential of radial basis function based support vector regression for global solar radiation prediction. Renewable and Sustainable Energy Reviews. 39, 1005-1011. Rao, D.V.S., Premalatha, M., and Naveen, C. (2018). Analysis of different combinations of meteorological parameters in predicting the horizontal global solar radiation with ANN approach: A case study. Renewable and Sustainable Energy Reviews. 91, 248-258. Samadianfard, S., Hashemi, S., and Izadyar, M. (2018). Estimation of daily pan evaporation by using machine learning methods. Iranian Journal of Irrigation and Drainage. 12(4), 1004-1015. (In Persian). Samadianfard, S., Majnooni-Heris, A., Qasem, S.N., Kisi, O., Shamshirband, S., and Chau, K.W. (2019). Daily global solar radiation modeling using datadriven techniques and empirical equations in a semi-arid climate. Engineering Applications of Computational Fluid Mechanics.13(1), 142–157. Taylor, K.E. 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research. Atmospheres. 106:7183-7192. Yadav, A. K., and Chandel, S. S. (2014). Solar radiation prediction using Artificial Neural Network techniques: A review. Renewable and Sustainable Energy Reviews. 33, 772-781. Zamani Mohiabadi, M. (2013). Instantaneous prediction of total solar radiation in Rafsanjan city by neural network. Iranian Journal of Energy. 16(4), 15-32. (In Persian). | ||
آمار تعداد مشاهده مقاله: 232 تعداد دریافت فایل اصل مقاله: 239 |