تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,035 |
تعداد دریافت فایل اصل مقاله | 97,205,609 |
پیشنگری خشکسالی تحت سناریوهای SSP تا پایان قرن بیستویکم، مطالعه موردی: حوضه دریاچه ارومیه | ||
تحقیقات آب و خاک ایران | ||
دوره 53، شماره 7، مهر 1401، صفحه 1499-1516 اصل مقاله (2.46 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2022.343700.669278 | ||
نویسندگان | ||
آذر زرین* 1؛ عباسعلی داداشی رودباری2؛ الهام کدخدا3 | ||
1دانشیار اقلیم شناسی، گروه جغرافیا، دانشگاه فردوسی مشهد، مشهد | ||
2پژوهشگر پسادکتری اقلیم شناسی، گروه جغرافیا، دانشگاه فردوسی مشهد، مشهد | ||
3دانشجوی دکتری اقلیم شناسی، گروه جغرافیا، دانشگاه یزد | ||
چکیده | ||
پیشنگری رخدادهای خشکسالی در یک منطقه مستعد خشکسالی همانند حوضه دریاچه ارومیه که یکی از آسیب پذیرترین مناطق برای مواجهه با خشکسالیهای مکرر و با شدت بالا در ایران است، برای کاهش ریسک مرتبط با آن بسیار مهم است. این پژوهش، با هدف پیشنگری خشکسالی هواشناسی در حوضه دریاچه ارومیه انجام شده است. برای این منظور مدلهای تصحیح شده اریبی CMIP6 تحت سناریوهای خوشبینانه (SSP1-2.6) و خیلی بدبینانه (SSP5-8.5) طی دوره 2100-2026 با استفاده از شاخص خشکسالی بارش تبخیر-تعرّق استاندارد شده هواشناسی (SPEI-1) مورد بررسی قرار گرفتهاند. درستی برونداد بارش مدلهای منفرد CMIP6 و مدل همادی تولید شده (MME) با روش میانگین وزنی با رویکرد مستقل (IWM) با سه سنجه آماری NRMSE، MBE و PCC مورد بررسی قرار گرفت. نتایج نشان داد مدلهای منتخب CMIP6 به رغم کمبرآوردی بارش در ایستگاههای نماینده مورد بررسی، کارایی مناسبی برای برآورد متغیر بارش در سطح حوضه دارند. مدل همادی تولید شده مقدار سنجه PCC را در تمامی ایستگاهها به 99/0 رسانده است. مقایسه شاخص SPEI-1 بین برونداد CMIP6-MME و دادههای هشت ایستگاه هواشناسی نشان از انطباق خوب شاخص در فصول پاییز، زمستان و بهار است. پیشنگری خشکسالی با مدلهای CMIP6 نشان از افزایش قابل توجه رخدادهای خشکسالی عمدتاً در غرب و شمال حوضه برای دوره گرم سال دارد. شدت خشکسالی و درصد سالهای کمتر از نرمال در آینده میانی (2075-2051) بیشتر از آینده دور (2100-2076) بخصوص برای سناریو SSP5-8.5 در متوسط پهنهای حوضه است. این نتایج میتواند مبنایی برای توسعه اقدامات سازگاری با خشکسالی در حوضه دریاچه ارومیه را فراهم کند. | ||
کلیدواژهها | ||
خشکسالی؛ شاخص SPEI؛ مدل های CMIP6؛ مدل همادی؛ حوضه دریاچه ارومیه | ||
مراجع | ||
Abbasi, A., Khalili, K., Behmanesh, J., & Shirzad, A. (2019). Drought monitoring and prediction using SPEI index and gene expression programming model in the west of Urmia Lake. Theoretical and Applied Climatology, 138(1), 553-567. Abbasian, M. S., Najafi, M. R., & Abrishamchi, A. (2021). Increasing risk of meteorological drought in the Lake Urmia basin under climate change: Introducing the precipitation–temperature deciles index. Journal of Hydrology, 592, 125586. AghaKouchak, A., Farahmand, A., Melton, F. S., Teixeira, J., Anderson, M. C., Wardlow, B. D., & Hain, C. R. (2015). Remote sensing of drought: Progress, challenges and opportunities. Reviews of Geophysics, 53(2), 452-480. Aguayo, R., León-Muñoz, J., Garreaud, R., & Montecinos, A. (2021). Hydrological droughts in the southern Andes (40–45° S) from an ensemble experiment using CMIP5 and CMIP6 models. Scientific reports, 11(1), 1-16. Almazroui, M., Saeed, S., Saeed, F., Islam, M. N., & Ismail, M. (2020). Projections of precipitation and temperature over the South Asian countries in CMIP6. Earth Systems and Environment, 4(2), 297-320. Asadi Rahim-Begi, N., Zarrin, A., Modfidi, A., Dadashi-Roudbari, A. (2022). Seasonal Distribution Analysis of Extreme Precipitation in Iran using AgERA5 dataset. Iranian Journal of Soil and Water Research, 52(11), 2723-2737 (In Farsi). Bai, H., Xiao, D., Wang, B., Liu, D. L., Feng, P., & Tang, J. (2021). Multi‐model ensemble of CMIP6 projections for future extreme climate stress on wheat in the North China Plain. International Journal of Climatology, 41, E171-E186. Bishop, C. H., & Abramowitz, G. (2013). Climate model dependence and the replicate Earth paradigm. Climate dynamics, 41(3), 885-900. Bazrafshan, O., Mahmudzadeh, F., & Bazrafshan, J. (2017). Evaluation of temporal trends of the drought indices SPI and SPEI in the Southern Coast of Iran. Desert Management, 4(8), 54-69 (In Farsi). Chappell, A., Renzullo, L. J., Raupach, T. H., & Haylock, M. (2013). Evaluating geostatistical methods of blending satellite and gauge data to estimate near real-time daily rainfall for Australia. Journal of hydrology, 493, 105-114. Chen, H., Sun, J., Lin, W., & Xu, H. (2020). Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Science Bulletin, 65(17), 1415-1418. Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., & Anchukaitis, K. J. (2020). Twenty‐first century drought projections in the CMIP6 forcing scenarios. Earth's Future, 8(6), e2019EF001461. Cook, B. I., Mankin, J. S., Marvel, K., Williams, A. P., Smerdon, J. E., & Anchukaitis, K. J. (2020). Twenty‐first century drought projections in the CMIP6 forcing scenarios. Earth's Future, 8(6), e2019EF001461. Dai, A. (2013). Increasing drought under global warming in observations and models. Nature climate change, 3(1), 52-58. Dai, A., Zhao, T., & Chen, J. (2018). Climate change and drought: a precipitation and evaporation perspective. Current Climate Change Reports, 4(3), 301-312. Davarpanah, S., Erfanian, M., & Javan, K. (2021). Assessment of climate change impacts on drought and wet spells in Lake Urmia Basin. Pure and Applied Geophysics, 178(2), 545-563. Dhurmea, K. R., Boojhawon, R., & Rughooputh, S. D. D. V. (2019). A drought climatology for Mauritius using the standardized precipitation index. Hydrological Sciences Journal, 64(2), 227-240. Dosio, A., Jury, M. W., Almazroui, M., Ashfaq, M., Diallo, I., Engelbrecht, F. A., ... & Tamoffo, A. T. (2021). Projected future daily characteristics of African precipitation based on global (CMIP5, CMIP6) and regional (CORDEX, CORDEX-CORE) climate models. Climate Dynamics, 57(11), 3135-3158. Ghamghami, M., & Irannejad, P. (2019). An analysis of droughts in Iran during 1988–2017. SN Applied Sciences, 1(10), 1-21. Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of hydrology, 228(1-2), 113-129. Grimes, D. I., & Pardo‐Igúzquiza, E. (2010). Geostatistical Analysis of Rainfall. Geographical analysis, 42(2), 136-160. Hamal, K., Sharma, S., Khadka, N., Haile, G. G., Joshi, B. B., Xu, T., & Dawadi, B. (2020). Assessment of drought impacts on crop yields across Nepal during 1987–2017. Meteorological Applications, 27(5), e1950. IPCC, (2012). “Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX).” A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, edited by C. B. Field, V. Barros, T. F. Stocker, and Q. Dahe, Cambridge University Press: Cambridge, UK. Lian, X., Piao, S., Li, L. Z., Li, Y., Huntingford, C., Ciais, P., ... & McVicar, T. R. (2020). Summer soil drying exacerbated by earlier spring greening of northern vegetation. Science advances, 6(1), eaax0255. Mahsafar, H., Maknoon, R., Saghafian, B. (2010). The Impact of Climate Change on Urmia Lake Water Level. Iran-Water Resources Research, 7(1), 47-58. Meehl, G. A., Senior, C. A., Eyring, V., Flato, G., Lamarque, J. F., Stouffer, R. J., ... & Schlund, M. (2020). Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Science Advances, 6(26), eaba1981. Meroni, M., Rembold, F., Fasbender, D., & Vrieling, A. (2017). Evaluation of the Standardized Precipitation Index as an early predictor of seasonal vegetation production anomalies in the Sahel. Remote sensing letters, 8(4), 301-310. Mirdashtvan, M., Malekian, A., Mohseni Saravi, M. (2017). Climate change assessment under greenhouse gases emission scenarios: Urmia Lake Basin. Desert Management, 5(9), 15-30. doi: 10.22034/jdmal.2017.27854. Mirgol, B., Nazari, M., Etedali, H. R., & Zamanian, K. (2021). Past and future drought trends, duration, and frequency in the semi‐arid Urmia Lake Basin under a changing climate. Meteorological Applications, 28(4), e2009. Mishra, V., Bhatia, U., & Tiwari, A. D. (2020). Bias-corrected climate projections for South Asia from coupled model intercomparison project-6. Scientific data, 7(1), 1-13. Mo, K. C., & Lettenmaier, D. P. (2016). Precipitation deficit flash droughts over the United States. Journal of Hydrometeorology, 17(4), 1169-1184. Mostafazadeh, R., Zabihi, M. (2016). Comparison of SPI and SPEI indices to meteorological drought assessment using R programming (Case study: Kurdistan Province). Journal of the Earth and Space Physics, 42(3), 633-643 (In Farsi). O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., ... & Sanderson, B. M. (2016). The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461-3482. Poljansek, K., Marín Ferrer, M., De Groeve, T., & Clark, I. (2017). Science for disaster risk management 2017: knowing better and losing less. ETH Zurich. Rezaei, A. (2021). Ocean-atmosphere circulation controls on integrated meteorological and agricultural drought over Iran. Journal of Hydrology, 603, 126928. Shamloo, N., Sattari, M. T., & Apaydin, H. (2022). Agricultural drought survey using MODIS-based image indices at the regional scale: case study of the Urmia Lake Basin, Iran. Theoretical and Applied Climatology, 1-13. https://doi.org/10.1007/s00704-022-04023-6. Sharma, S., Hamal, K., Khadka, N., Ali, M., Subedi, M., Hussain, G., ... & Dawadi, B. (2021). Projected Drought Conditions over Southern Slope of the Central Himalaya Using CMIP6 Models. Earth Systems and Environment, 5(4), 849-859. Song, Y. H., Shahid, S., & Chung, E. S. (2022). Differences in multi‐model ensembles of CMIP5 and CMIP6 projections for future droughts in South Korea. International Journal of Climatology, 42(5), 2688-2716. Su, B., Huang, J., Mondal, S. K., Zhai, J., Wang, Y., Wen, S., ... & Li, A. (2021). Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmospheric Research, 250, 105375. Swann, A. L. (2018). Plants and drought in a changing climate. Current Climate Change Reports, 4(2), 192-201. Tajbakhsh, S., Eisakhani, N., & Fazl Kazemi, A. (2015). Assessment of meteorological drought in Iran using standardized precipitation and evapotranspiration index (SPEI). Journal of the Earth and Space Physics, 41(2), 313-321 (In Farsi). Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718. Vicente-Serrano, S. M., Quiring, S. M., Pena-Gallardo, M., Yuan, S., & Dominguez-Castro, F. (2020). A review of environmental droughts: Increased risk under global warming? Earth-Science Reviews, 201, 102953. Wang, T., Tu, X., Singh, V. P., Chen, X., & Lin, K. (2021). Global data assessment and analysis of drought characteristics based on CMIP6. Journal of Hydrology, 596, 126091. Wang, T., Tu, X., Singh, V. P., Chen, X., & Lin, K. (2021). Global data assessment and analysis of drought characteristics based on CMIP6. Journal of Hydrology, 596, 126091. Weedon, G. P., Gomes, S., Viterbo, P., Shuttleworth, W. J., Blyth, E., Österle, H., ... & Best, M. (2011). Creation of the WATCH forcing data and its use to assess global and regional reference crop evaporation over land during the twentieth century. Journal of Hydrometeorology, 12(5), 823-848. Xu, L., Chen, N., & Zhang, X. (2019). Global drought trends under 1.5 and 2 C warming. International Journal of Climatology, 39(4), 2375-2385. Xu, Y., Zhang, X., Wang, X., Hao, Z., Singh, V. P., & Hao, F. (2019). Propagation from meteorological drought to hydrological drought under the impact of human activities: A case study in northern China. Journal of Hydrology, 579, 124147. Zarch, M. A. A., Sivakumar, B., & Sharma, A. (2015). Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI). Journal of hydrology, 526, 183-195. Zarrin, A., Dadashi Roudbari, A. (2020). Projection the Long-Term Outlook Iran Future Temperature Based on the Output of the coupled model intercomparison project phase 6 (CMIP6). Journal of the Earth and Space Physics, 46(3), 583-602 (In Farsi). Zarrin, A., Dadashi-Roudbari, A. (2021a). Projected consecutive dry and wet days in Iran based on CMIP6 bias‐corrected multi‐model ensemble. Journal of the Earth and Space Physics, 47(3), 561-578 (In Farsi). Zarrin, A., Dadashi-Roudbari, A. (2021b). Projected consecutive dry and wet days in Iran based on CMIP6 bias‐corrected multi‐model ensemble. Journal of the Earth and Space Physics, 47(3), 561-578 (In Farsi). Zeng, J., Li, J., Lu, X., Wei, Z., Shangguan, W., Zhang, S., ... & Zhang, S. (2022). Assessment of global meteorological, hydrological and agricultural drought under future warming based on CMIP6. Atmospheric and Oceanic Science Letters, 15(1), 100143. Zhai, J., Mondal, S. K., Fischer, T., Wang, Y., Su, B., Huang, J., ... & Uddin, M. J. (2020). Future drought characteristics through a multi-model ensemble from CMIP6 over South Asia. Atmospheric Research, 246, 105111. Zhao, T., & Dai, A. (2017). Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes. Climatic Change, 144(3), 535-548. | ||
آمار تعداد مشاهده مقاله: 397 تعداد دریافت فایل اصل مقاله: 348 |