- Hu, W., M.E. Fauzi, M. Igarashi, A. Higo, M.-Y. Lee, Y. Li, N. Usami, and S. Samukawa.(2013). Type-II Ge/Si quantum dot superlattice for intermediate-band solar cell applications. in 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC). IEEE.
- Fioretti, A.N., M. Boccard, R. Monnard, and C. Ballif.(2019). Low-temperature $ p $-type microcrystalline silicon as carrier selective contact for silicon heterojunction solar cells. IEEE Journal of Photovoltaics. 9(5): p. 1158-1165.
- Collazos, L.J., M.M. Al Huwayz, R. Jakomin, D.N. Micha, L.D. Pinto, R.M. Kawabata, M.P. Pires, M. Henini, and P.L. Souza.(2021). The role of defects on the performance of quantum dot intermediate band solar cells. IEEE Journal of Photovoltaics. 11(4): p. 1022-1031.
- Delamarre, A., D. Suchet, N. Cavassilas, Y. Okada, M. Sugiyama, and J.-F. Guillemoles.(2018). An electronic ratchet is required in nanostructured intermediate-band solar cells. IEEE Journal of Photovoltaics. 8(6): p. 1553-1559.
- Islam, A., A. Das, N. Sarkar, M. Matin, and N. Amin.(2018). Numerical Analysis of PbSe/GaAs Quantum Dot Intermediate Band Solar Cell (QDIBSC). in 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2). IEEE.
- Dong, B., S. Guo, A. Afanasev, and M. Zaghloul.(2016). Simulations of properties of quantum dots and high-efficiency GaAs solar cells. in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). IEEE.
- Tsai, Y.-C., M.-Y. Lee, Y. Li, and S. Samukawa.(2017). Design and simulation of intermediate band solar cell with ultradense type-II multilayer Ge/Si quantum dot superlattice. IEEE Transactions on Electron Devices. 64(11): p. 4547-4553.
- Rocha, B., R. Jakomin, R. Kawabata, L. Dornelas, M. Pires, and P. Souza.(2019). Transition Energy Calculations of Type II In (As) P/InGaP Quantum Dots for Intermediate Band Solar Cells. in 2019 34th Symposium on Microelectronics Technology and Devices (SBMicro). IEEE.
- Hossain, M.J., S. Roy, M.S. Hossain, and M. Moznuzzaman.(2018). Analytical modeling of AlInN/GaN quantum dot intermediate band solar cell. in 2018 International Conference on Innovation in Engineering and Technology (ICIET). IEEE.
- Villa, J., I. Ramiro, J.M. Ripalda, I. Tobías, P. García-Linares, E. Antolín, and A. Martí.(2020). Contribution to the study of sub-bandgap photon absorption in quantum dot InAs/AlGaAs intermediate band solar cells. IEEE Journal of Photovoltaics. 11(2): p. 420-428.
- Ankhi, A.I., M.R. Islam, M.T. Hasan, and E. Hossain.(2020). Projected Performance of InGaAs/GaAs Quantum Dot Solar Cells: Effects of Cap and Passivation Layers. IEEE Access. 8: p. 212339-212350.
- de Paula Dias, C., E.C. Weiner, R.M.S. Kawabata, R. Jakomin, P.L. Souza, and M.P. Pires.(2021). Optical Characterization of InAs/InGaP Intermediate Band Solar Cells. in 2021 35th Symposium on Microelectronics Technology and Devices (SBMicro). IEEE.
- Sharan, A. and J. Kumar.(2022). Effect of Position-Dependent Doping on Intermediate Band Generation-Recombination Rate in InAs/GaAs Quantum Dot Solar Cell. IEEE Transactions on Nanotechnology. 21: p. 151-157.
- Robichaud, L. and J.J. Krich.(2022). Ingan quantum dot superlattices as ratchet band solar cells. IEEE Journal of Photovoltaics. 12(2): p. 474-482.
- Lee, M.-Y., Y.-C. Tsai, Y. Li, and S. Samukawa.(2016). Numerical simulation of physical and electrical characteristics of Ge/Si quantum dots based intermediate band solar cell. in 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO). IEEE.
- Mahmoudi, T., Y. Wang, and Y.-B. Hahn.(2018). Graphene and its derivatives for solar cells application. Nano Energy. 47: p. 51-65.
- Chen, Q., A.W. Robertson, K. He, C. Gong, E. Yoon, A.I. Kirkland, G.-D. Lee, and J.H. Warner.(2016). Elongated silicon–carbon bonds at graphene edges. ACS nano. 10(1): p. 142-149.
- Javvaji, B., B.M. Shenoy, D.R. Mahapatra, A. Ravikumar, G. Hegde, and M. Rizwan.(2017). Stable configurations of graphene on silicon. Applied Surface Science. 414: p. 25-33.
- Arefinia, Z. and A. Asgari.(2017). Optimization study of a novel few-layer graphene/silicon quantum dots/silicon heterojunction solar cell through opto-electrical modeling. IEEE Journal of Quantum Electronics. 54(1): p. 1-6.
- Mirzakhani, M.(2017). Electronic properties and energy levels of graphene quantum dots, University of Antwerp
- Lin, I.-T. and J.-M. Liu.(2013). Terahertz frequency-dependent carrier scattering rate and mobility of monolayer and AA-stacked multilayer graphene. IEEE Journal of Selected Topics in Quantum Electronics. 20(1): p. 122-129.
- Daukiya, L., M.N. Nair, M. Cranney, F. Vonau, S. Hajjar-Garreau, D. Aubel, and L. Simon.(2019). Functionalization of 2D materials by intercalation. Progress in Surface Science. 94(1): p. 1-20.
- Xiang, C., F. Kong, K. Li, and M. Liu.(2017). A high-order symplectic FDTD scheme for the Maxwell-Schrodinger system. IEEE Journal of Quantum Electronics. 54(1): p. 1-8.
- Junaid, M. and G. Witjaksono.(2019). Analysis of band gap in AA and Ab stacked bilayer graphene by Hamiltonian tight binding method. in 2019 IEEE International Conference on Sensors and Nanotechnology. IEEE.
- Papaconstantopoulos, D. and M. Mehl.(2003). The Slater–Koster tight-binding method: a computationally efficient and accurate approach. Journal of Physics: Condensed Matter. 15(10): p. R413.
- Sun, Y., S.E. Thompson, and T. Nishida,(2009). Strain effect in semiconductors: theory and device applications. 2009: Springer Science & Business Media.
- Dresselhaus, G., M.S. Dresselhaus, and R. Saito,(1998). Physical properties of carbon nanotubes. 1998: World scientific.
- Kiziloglu, V., T.S. Navruz, and M. Saritas.(2018). Size Dependent Intermediate Band Energy Levels and Absorption of Bound States in Box Shaped Quantum Dots. in 2018 International Conference on Photovoltaic Science and Technologies (PVCon). IEEE.
- Hellstroem, S. and S.M. Hubbard.(2014). Drift-diffusion simulations of InAs/AlAsSb quantum dot intermediate-band solar cells. in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC). IEEE.
- Chaves, A., J.G. Azadani, H. Alsalman, D. Da Costa, R. Frisenda, A. Chaves, S.H. Song, Y.D. Kim, D. He, and J. Zhou.(2020). Bandgap engineering of two-dimensional semiconductor materials. npj 2D Materials and Applications. 4(1): p. 1-21.
- Afanas' ev, V.V.(2014). Electron band alignment at interfaces of semiconductors with insulating oxides: An internal photoemission study. Advances in Condensed Matter Physics. 2014.
- Nandan, Y. and M.S. Mehata.(2019). Wavefunction engineering of type-I/type-II excitons of CdSe/CdS core-shell quantum dots. Scientific reports. 9(1): p. 1-11.
- .www.kb.lumerical.com
- Zhu, L., H. Akiyama, and Y. Kanemitsu.(2018). Intrinsic and extrinsic drops in open-circuit voltage and conversion efficiency in solar cells with quantum dots embedded in host materials. Scientific reports. 8(1): p. 1-12.
|