تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,122,314 |
تعداد دریافت فایل اصل مقاله | 97,230,081 |
Some new results on the number of fair dominating sets | ||
Journal of Algorithms and Computation | ||
دوره 54، شماره 2، اسفند 2022، صفحه 1-12 اصل مقاله (357.87 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jac.2022.90381 | ||
نویسندگان | ||
Saeid Alikhani* 1؛ Davood Bakhshesh2؛ Nasrin Jafari3؛ Maryam Safazadeh3 | ||
1Department of Mathematical Sciences, Yazd University, 89195-741, Yazd, Iran | ||
2Department of Computer Science, University of Bojnord, Bojnord, Iran. | ||
3Department of Mathematical Sciences, Yazd University, 89195-741, Yazd, Iran. | ||
چکیده | ||
Let $G=(V, E)$ be a simple graph. A dominating set of $G$ is a subset $D\subseteq V$ such that every vertex not in $D$ is adjacent to at least one vertex in $D$. The cardinality of the smallest dominating set of $G$, denoted by $\gamma(G)$, is the domination number of $G$. For $k \geq 1$, a $k$-fair dominating set ($kFD$-set) in $G$, is a dominating set $S$ such that $|N(v) \cap D|=k$ for every vertex $ v \in V\setminus D$. A fair dominating set in $G$ is a $kFD$-set for some integer $k\geq 1$. Let ${\cal D}_f(G,i)$ be the family of the fair dominating sets of a graph $G$ with cardinality $i$ and let $d_f(G,i)=|{\cal D}_f(G,i)|$. The fair domination polynomial of $G$ is $D_f(G,x)=\sum_{ i=1}^{|V(G)|} d_f(G,i) x^{i}$. In this paper, after computation of the fair domination number of power of cycle, we count the number of the fair dominating sets of certain graphs such as cubic graphs of order~$10$, power of paths, and power of cycles. As a consequence, all cubic graphs of order $10$ and especially the Petersen graph are determined uniquely by their fair domination polynomial. | ||
کلیدواژهها | ||
fair dominating set؛ Petersen graph؛ power of path and cycle؛ unimodal | ||
آمار تعداد مشاهده مقاله: 176 تعداد دریافت فایل اصل مقاله: 241 |