تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,118,431 |
تعداد دریافت فایل اصل مقاله | 97,224,475 |
Hepatic Health and Humoral Immunological Parameters of Common Carp (Cyprinus carpio) Fed Lactic Acid-supplemented Diets | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 8، دوره 17، شماره 3، مهر 2023، صفحه 263-272 اصل مقاله (1.52 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.17.3.1005338 | ||
نویسندگان | ||
Ali Taheri Mirghaed* 1؛ Melika Ghelichpour1؛ Abbasali Aghaei Moghaddam2؛ Seyed Hossein Hoseinifar2؛ Seyyed Morteza Hoseini2 | ||
1Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
2Center for International Scientific Studies & Collaboration (CISSC), Ministry of Science Research and Technology, Tehran, Iran. | ||
چکیده | ||
Background: Organic acids and their salts are known as appropriate substitutes in feed for improving the health, growth, and performance of fish. Objectives: The present study was conducted to determine the effects of dietary lactic acid supplementation on immunological factors, hepatic enzyme activity, and plasma proteins in common carp, Cyprinus carpio. The fish were fed the diets mentioned above for 56 days, then their growth performance, humoral immunity, and plasma hepatic enzymes were assessed. Methods: A total of 180 fish (mean weight=25 g) were randomly distributed in twelve tanks (150 L water in each tank) as four treatments, fed diets containing 0, 2.5, 5, and 10 g/kg lactic acid (T0, T1, T2, and T3, respectively). Results: At the end of the feeding trial, T2 showed significantly higher growth performance than T0. Plasma total protein, albumin, and globulin levels of T1-T3 were significantly higher than that of T0. However, plasma protein levels decreased significantly by elevation in dietary lactic acid concentration (10 g/kg). No significant differences were observed in plasma aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activity among the treatments, although alanine aminotransferase (ALT) activity decreased significantly in fish-fed dietary lactic acid supplementation (T1-T3) compared with the control group (T0). All humoral immunity parameters (lysozyme, complement, immunoglobulin, and bactericidal activity) increased significantly in T1-T3 treatments compared to the T0 group. Conclusion: Overall, dietary lactic acid supplementation improves growth performance, humoral immunological parameters, and hepatic health. According to the results, dietary lactic acid (2.5-5 g/kg) is recommended for preparing common carp feed. | ||
کلیدواژهها | ||
Food additives؛ Common carp؛ Hepatic health؛ Immunity status؛ Lactic acid | ||
اصل مقاله | ||
1. Introduction
3. Results
4. Discussion
References Aalamifar, H., Soltanian, S., Vazirzadeh, A., Akhlaghi, M., Morshedi, V., & Gholamhosseini, A., et al. (2020). Dietary butyric acid improved growth, digestive enzyme activities and humoral immune parameters in barramundi (lates calcarifer). Aquaculture Nutrition, 26(1), 156-164. [DOI:10.1111/anu.12977] Abdel-Latif, H. M. R., Hendam, B. M., Shukry, M., El-Shafai, N. M., El-Mehasseb, I. M., & Dawood, M. A. O., et al. (2021). Effects of sodium butyrate nanoparticles on the hemato-immunological indices, hepatic antioxidant capacity, and gene expression responses in oreochromisniloticus. Fish & Shellfish Immunology, 119, 516–523. [DOI:10.1016/j.fsi.2021.10.039. PMID: 34718125][PMID] Abdulrahman, N., Hoshyar Abid, S., Khidir, A. A., Omer, B. B., Hama Rasheed, D. B., & Baha Alddin, L. H. (2018). Effect of adding microalgae chlorella sp. on some biological parameters and proximate analysis of common carp cyprinus carpio L. Iranian Journal of Veterinary Medicine, 12(3), 199-206. [DOI:10.22059/IJVM.2018.244747.1004856] Alishahi, M., & Jangeran Nejad, A. (2012). Effects of propolis, a honeybee product, on growth performance and immune responses of Barbus barbulus. Iranian Journal of Veterinary Medicine, 6(4), 249-257. [DOI:10.22059/IJVM.2012.30224] Alishahi, M., Esmaili Rad, A., Zarei, M., & Ghorbanpour, M. (2014). Effect of dietary chitosan on immune response and disease resistance in Cyprinus carpio. Iranian Journal of Veterinary Medicine, 8(2), 125-133. [DOI:10.22059/ijvm.2014.51410] Baruah, K., Pal, A. K., Sahu, N. P., Jain, K. K., Mukherjee, S. C. & Debnath, D. (2005). Dietary protein level, microbial phytase, citric acid and their interactions on bone mineralization of Labeo rohita (hamilton) juveniles. Aquaculture Research, 36(8), 803-812. [DOI:10.1111/j.1365-2109.2005.01290.x] Castillo, S., Rosales, M., Pohlenz, C. & Gatlin III, D. M. (2014). Effects of organic acids on growth performance and digestive enzyme activities of juvenile red drum Sciaenops ocellatus. Aquaculture, 433, 6-12. [DOI:10.1016/j.aquaculture.2014.05.038] Christiansen, E. F., Cray, C., Lewbart, G. A., & Harms, C. A. (2015). Plasma protein electrophoresis and acute phase proteins in koi carp (cyprinus carpio) following exploratory coeliotomy. Journal of Exotic Pet Medicine, 24(1), 76-83. [DOI:10.1053/j.jepm.2014.11.008] Ellis, A. E. (1990). Lysozyme assays. In: J. S. Stolen, T. C. Fletcher, D. P. Anderson, B. S. Roberson, & W. B. Van Muiswinkel (Eds.), Techniques in Fish Immunology (PP. 101-103), Lagos: SOS Publications. [Link] Food and Agriculture Organization. (2022). Fisheries and aquaculture information and statistics branch- common carp, Cyprinus carpio. Rome: FAO. [Link] Ghelichpour, M., Taheri Mirghaed, A., Mirzargar, S. S., Joshaghani, H., & Ebrahimzadeh Mousavi, H. (2017). Plasma proteins, hepatic enzymes, thyroid hormones and liver histopathology of cyprinus carpio (linnaeus, 1758) exposed to an oxadiazin pesticide, indoxacarb. Aquaculture Research, 48(11), 5666-5676. [DOI:10.1111/are.13390] Hassaan, M. S., Soltan, M. A., Jarmołowicz, S., & Abdo, H. S. (2018). Combined effects of dietary malic acid and Bacillus subtilis on growth, gut microbiota and blood parameters of Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition, 24(1), 83-93. [DOI:10.1111/anu.12536] Hoseini, S. M., Rajabiesterabadi, H., Abbasi, M., Khosraviani, K., Hoseinifar, S. H., & Van Doan, H. (2022). Modulation of humoral immunological and antioxidant responses and gut bacterial community and gene expression in rainbow trout, Oncorhynchus mykiss, by dietary lactic acid supplementation. Fish & Shellfish Immunology, 125, 26–34. [DOI:10.1016/j.fsi.2022.04.038][PMID] Hoseinifar, S. H., Zoheiri, F., & Caipang, C. M. (2016). Dietary sodium propionate improved performance, mucosal and humoral immune responses in Caspian white fish (rutilus frisii kutum) fry. Fish & shellfish immunology, 55, 523–528. [DOI:10.1016/j.fsi.2016.06.027][PMID] Huan, D., Li, X., Chowdhury, M. A. K., Yang, H., Liang, G., & Leng, X. (2018). Organic acid salts, protease and their combination in fish meal-free diets improved growth, nutrient retention and digestibility of tilapia (oreochromis niloticus × O. aureus). Aquaculture Nutrition, 24(6), 1813-1821. [DOI:10.1111/anu.12820] Iran Fisheries Organization. (2020). [Iranian fisheries statistical report. Tehran: Iran Fisheries Organization. [Link] Kumar, P., Jain, K. K., Sardar, P., Sahu, N. P., & Gupta, S. (2017). Dietary supplementation of acidifier: effect on growth performance and haemato-biochemical parameters in the diet of Cirrhinus mrigala juvenile. Aquaculture International, 25, 2101-2116. [DOI:10.1007/s10499-017-0176-4] Lee, C. S., Lim, C., Gatlin III, D. M., & Webster, C. D. (2015). Dietary nutrients, additives, and fish health. New Jersey: Wiley-Blackwell. [DOI:10.1002/9781119005568] Lim, C., Lückstädt, C., Webster, C. D., & Kesius, P. (2015). Organic acids and their salts. In C. S. Lee, C. Lim, D. M. Gatlin, & C. D. Webster (Eds.), Dietary nutrients, additives, and fish health (PP. 305-320). Hoboken: Willey-Blackwell. [DOI:10.1002/9781119005568.ch15] Luckstadt, C. (2008) The use of acidifiers in fish nutrition. CABI Reviews, 3(44), 1-8. [DOI:10.1079/PAVSNNR20083044] Manera, M., & Britti, D. (2008). Assessment of serum protein fractions in rainbow trout using automated electrophoresis and densitometry. Veterinary Clinical Pathology, 37(4), 452–456. [DOI:10.1111/j.1939-165X.2008.00070.x][PMID] Matani Bour, H. A., Esmaeili, M., & Abedian Kenari, A. (2018). Growth performance, muscle and liver composition, blood traits, digestibility and gut bacteria of beluga (huso huso) juvenile fed different levels of soybean meal and lactic acid. Aquaculture Nutrition, 24(4), 1361-1368. [DOI:10.1111/anu.12673] Mohiseni, M. (2017). Medicinal herbs, strong source of antioxidant in aquaculture: A mini review. Modern Applications in Pharmacy & Pharmacology, 1(1), 1-5. [DOI:10.31031/MAPP.2017.01.000504] Nayak, S., Portugal, I., & Zilberg, D. (2018). Analyzing complement activity in the serum and body homogenates of different fish species, using rabbit and sheep red blood cells. Veterinary Immunology and Iimmunopathology, 199, 39-42. [PMID] Reda, R. M., Mahmoud, R., Selim, K. M., & El-Araby, I. E. (2016). Effects of dietary acidifiers on growth, hematology, immune response and disease resistance of Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 50, 255–262. [DOI:10.1016/j.fsi.2016.01.040][PMID] Safari, O., Paolucci, M., & Ahmadniaye Motlagh, H. (2021). Effect of dietary encapsulated organic salts (Na-acetate, Na-butyrate, Na-lactate and Na-propionate) on growth performance, haemolymph, antioxidant and digestive enzyme activities and gut microbiota of juvenile narrow clawed crayfish, Astacus leptodactylus leptodactylus Eschscholtz, 1823. Aquaculture Nutrition, 27, 91-104. [DOI:10.1111/anu.13167] Sangari, M., Sotoudeh, E., Bagheri, D., Morammazi, S., & Mozanzadeh, M. T. (2021) Growth, body composition, and hematology of yellowfin seabream (acanthopagrus latus) given feeds supplemented with organic acid salts (sodium acetate and sodium propionate). Aquaculture International, 29, 261-273. [DOI:10.1007/s10499-020-00625-x] Silva, D., Cortez-Moreira, M., Cunha Bastos, V. L. F., Cunha Bastos, J., & Martins Cortez, C. (2010). Spectrofluorimetric study of the interaction of methyl-parathion with fish serum albumin. Fish physiology and Biochemistry, 36(3), 427–433. [DOI:10.1007/s10695-009-9312-z][PMID] Siwicki, A., & Anderson, D. (1993). Nonspecific defense mechanisms assay in fish: II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin level in serum. In A. Siwicki, D. Anderson, & J. Waluga (Eds.), Fish disease diagnosis and prevention methods (PP. 105-112). Olsztyn: Wydawnictwo Instytutu Rybactwa Srodladowego. [Link] Walling, M., Haschek, W. M., Rousseaux, C. (2009). Chapter 5 - Techniques in toxicologic pathology. In: W. M. Haschek, C. G. Rousseaux, & M. A. Wallig (Eds.), Fundamentals of toxicologic pathology (PP. 81-92). Massachusetts: Academic Press. [DOI:10.1016/B978-0-12-370469-6.00005-2] Wassef, E. A., Abdel-Momen, S. A. G., El-Sayed Saleh, N., Al-Zayat, A. M., & Ashry, A. M. (2017). Is sodium diformate a beneficial feed supplement for European seabass (dicentrarchus labrax)? Effect on growth performance and health status. The Egyptian Journal of Aquatic Research, 43(3), 229-234. [DOI:10.1016/j.ejar.2017.09.005] | ||
مراجع | ||
Aalamifar, H., Soltanian, S., Vazirzadeh, A., Akhlaghi, M., Morshedi, V., & Gholamhosseini, A., et al. (2020). Dietary butyric acid improved growth, digestive enzyme activities and humoral immune parameters in barramundi (lates calcarifer). Aquaculture Nutrition, 26(1), 156-164. [DOI:10.1111/anu.12977] Abdel-Latif, H. M. R., Hendam, B. M., Shukry, M., El-Shafai, N. M., El-Mehasseb, I. M., & Dawood, M. A. O., et al. (2021). Effects of sodium butyrate nanoparticles on the hemato-immunological indices, hepatic antioxidant capacity, and gene expression responses in oreochromisniloticus. Fish & Shellfish Immunology, 119, 516–523. [DOI:10.1016/j.fsi.2021.10.039. PMID: 34718125][PMID] Abdulrahman, N., Hoshyar Abid, S., Khidir, A. A., Omer, B. B., Hama Rasheed, D. B., & Baha Alddin, L. H. (2018). Effect of adding microalgae chlorella sp. on some biological parameters and proximate analysis of common carp cyprinus carpio L. Iranian Journal of Veterinary Medicine, 12(3), 199-206. [DOI:10.22059/IJVM.2018.244747.1004856] Alishahi, M., & Jangeran Nejad, A. (2012). Effects of propolis, a honeybee product, on growth performance and immune responses of Barbus barbulus. Iranian Journal of Veterinary Medicine, 6(4), 249-257. [DOI:10.22059/IJVM.2012.30224] Alishahi, M., Esmaili Rad, A., Zarei, M., & Ghorbanpour, M. (2014). Effect of dietary chitosan on immune response and disease resistance in Cyprinus carpio. Iranian Journal of Veterinary Medicine, 8(2), 125-133. [DOI:10.22059/ijvm.2014.51410] Baruah, K., Pal, A. K., Sahu, N. P., Jain, K. K., Mukherjee, S. C. & Debnath, D. (2005). Dietary protein level, microbial phytase, citric acid and their interactions on bone mineralization of Labeo rohita (hamilton) juveniles. Aquaculture Research, 36(8), 803-812. [DOI:10.1111/j.1365-2109.2005.01290.x] Castillo, S., Rosales, M., Pohlenz, C. & Gatlin III, D. M. (2014). Effects of organic acids on growth performance and digestive enzyme activities of juvenile red drum Sciaenops ocellatus. Aquaculture, 433, 6-12. [DOI:10.1016/j.aquaculture.2014.05.038] Christiansen, E. F., Cray, C., Lewbart, G. A., & Harms, C. A. (2015). Plasma protein electrophoresis and acute phase proteins in koi carp (cyprinus carpio) following exploratory coeliotomy. Journal of Exotic Pet Medicine, 24(1), 76-83. [DOI:10.1053/j.jepm.2014.11.008] Ellis, A. E. (1990). Lysozyme assays. In: J. S. Stolen, T. C. Fletcher, D. P. Anderson, B. S. Roberson, & W. B. Van Muiswinkel (Eds.), Techniques in Fish Immunology (PP. 101-103), Lagos: SOS Publications. [Link] Food and Agriculture Organization. (2022). Fisheries and aquaculture information and statistics branch- common carp, Cyprinus carpio. Rome: FAO. [Link] Ghelichpour, M., Taheri Mirghaed, A., Mirzargar, S. S., Joshaghani, H., & Ebrahimzadeh Mousavi, H. (2017). Plasma proteins, hepatic enzymes, thyroid hormones and liver histopathology of cyprinus carpio (linnaeus, 1758) exposed to an oxadiazin pesticide, indoxacarb. Aquaculture Research, 48(11), 5666-5676. [DOI:10.1111/are.13390] Hassaan, M. S., Soltan, M. A., Jarmołowicz, S., & Abdo, H. S. (2018). Combined effects of dietary malic acid and Bacillus subtilis on growth, gut microbiota and blood parameters of Nile tilapia (Oreochromis niloticus). Aquaculture Nutrition, 24(1), 83-93. [DOI:10.1111/anu.12536] Hoseini, S. M., Rajabiesterabadi, H., Abbasi, M., Khosraviani, K., Hoseinifar, S. H., & Van Doan, H. (2022). Modulation of humoral immunological and antioxidant responses and gut bacterial community and gene expression in rainbow trout, Oncorhynchus mykiss, by dietary lactic acid supplementation. Fish & Shellfish Immunology, 125, 26–34. [DOI:10.1016/j.fsi.2022.04.038][PMID] Hoseinifar, S. H., Zoheiri, F., & Caipang, C. M. (2016). Dietary sodium propionate improved performance, mucosal and humoral immune responses in Caspian white fish (rutilus frisii kutum) fry. Fish & shellfish immunology, 55, 523–528. [DOI:10.1016/j.fsi.2016.06.027][PMID] Huan, D., Li, X., Chowdhury, M. A. K., Yang, H., Liang, G., & Leng, X. (2018). Organic acid salts, protease and their combination in fish meal-free diets improved growth, nutrient retention and digestibility of tilapia (oreochromis niloticus × O. aureus). Aquaculture Nutrition, 24(6), 1813-1821. [DOI:10.1111/anu.12820] Iran Fisheries Organization. (2020). [Iranian fisheries statistical report. Tehran: Iran Fisheries Organization. [Link] Kumar, P., Jain, K. K., Sardar, P., Sahu, N. P., & Gupta, S. (2017). Dietary supplementation of acidifier: effect on growth performance and haemato-biochemical parameters in the diet of Cirrhinus mrigala juvenile. Aquaculture International, 25, 2101-2116. [DOI:10.1007/s10499-017-0176-4] Lee, C. S., Lim, C., Gatlin III, D. M., & Webster, C. D. (2015). Dietary nutrients, additives, and fish health. New Jersey: Wiley-Blackwell. [DOI:10.1002/9781119005568] Lim, C., Lückstädt, C., Webster, C. D., & Kesius, P. (2015). Organic acids and their salts. In C. S. Lee, C. Lim, D. M. Gatlin, & C. D. Webster (Eds.), Dietary nutrients, additives, and fish health (PP. 305-320). Hoboken: Willey-Blackwell. [DOI:10.1002/9781119005568.ch15] Luckstadt, C. (2008) The use of acidifiers in fish nutrition. CABI Reviews, 3(44), 1-8. [DOI:10.1079/PAVSNNR20083044] Manera, M., & Britti, D. (2008). Assessment of serum protein fractions in rainbow trout using automated electrophoresis and densitometry. Veterinary Clinical Pathology, 37(4), 452–456. [DOI:10.1111/j.1939-165X.2008.00070.x][PMID] Matani Bour, H. A., Esmaeili, M., & Abedian Kenari, A. (2018). Growth performance, muscle and liver composition, blood traits, digestibility and gut bacteria of beluga (huso huso) juvenile fed different levels of soybean meal and lactic acid. Aquaculture Nutrition, 24(4), 1361-1368. [DOI:10.1111/anu.12673] Mohiseni, M. (2017). Medicinal herbs, strong source of antioxidant in aquaculture: A mini review. Modern Applications in Pharmacy & Pharmacology, 1(1), 1-5. [DOI:10.31031/MAPP.2017.01.000504] Nayak, S., Portugal, I., & Zilberg, D. (2018). Analyzing complement activity in the serum and body homogenates of different fish species, using rabbit and sheep red blood cells. Veterinary Immunology and Iimmunopathology, 199, 39-42. [PMID] Reda, R. M., Mahmoud, R., Selim, K. M., & El-Araby, I. E. (2016). Effects of dietary acidifiers on growth, hematology, immune response and disease resistance of Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 50, 255–262. [DOI:10.1016/j.fsi.2016.01.040][PMID] Safari, O., Paolucci, M., & Ahmadniaye Motlagh, H. (2021). Effect of dietary encapsulated organic salts (Na-acetate, Na-butyrate, Na-lactate and Na-propionate) on growth performance, haemolymph, antioxidant and digestive enzyme activities and gut microbiota of juvenile narrow clawed crayfish, Astacus leptodactylus leptodactylus Eschscholtz, 1823. Aquaculture Nutrition, 27, 91-104. [DOI:10.1111/anu.13167] Sangari, M., Sotoudeh, E., Bagheri, D., Morammazi, S., & Mozanzadeh, M. T. (2021) Growth, body composition, and hematology of yellowfin seabream (acanthopagrus latus) given feeds supplemented with organic acid salts (sodium acetate and sodium propionate). Aquaculture International, 29, 261-273. [DOI:10.1007/s10499-020-00625-x] Silva, D., Cortez-Moreira, M., Cunha Bastos, V. L. F., Cunha Bastos, J., & Martins Cortez, C. (2010). Spectrofluorimetric study of the interaction of methyl-parathion with fish serum albumin. Fish physiology and Biochemistry, 36(3), 427–433. [DOI:10.1007/s10695-009-9312-z][PMID] Siwicki, A., & Anderson, D. (1993). Nonspecific defense mechanisms assay in fish: II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin level in serum. In A. Siwicki, D. Anderson, & J. Waluga (Eds.), Fish disease diagnosis and prevention methods (PP. 105-112). Olsztyn: Wydawnictwo Instytutu Rybactwa Srodladowego. [Link] Walling, M., Haschek, W. M., Rousseaux, C. (2009). Chapter 5 - Techniques in toxicologic pathology. In: W. M. Haschek, C. G. Rousseaux, & M. A. Wallig (Eds.), Fundamentals of toxicologic pathology (PP. 81-92). Massachusetts: Academic Press. [DOI:10.1016/B978-0-12-370469-6.00005-2] Wassef, E. A., Abdel-Momen, S. A. G., El-Sayed Saleh, N., Al-Zayat, A. M., & Ashry, A. M. (2017). Is sodium diformate a beneficial feed supplement for European seabass (dicentrarchus labrax)? Effect on growth performance and health status. The Egyptian Journal of Aquatic Research, 43(3), 229-234. [DOI:10.1016/j.ejar.2017.09.005] | ||
آمار تعداد مشاهده مقاله: 397 تعداد دریافت فایل اصل مقاله: 499 |