تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,738 |
تعداد دریافت فایل اصل مقاله | 97,231,811 |
تأثیر استخراج قلیایی سرد بر ویژگیهای نانوکریستالها و نانوفیبریلهای لیگنوسلولزی تولیدشده از خمیرکاغذ مونواتانولآمین باگاس | ||
نشریه جنگل و فرآورده های چوب | ||
دوره 75، شماره 3، آذر 1401، صفحه 281-293 اصل مقاله (924.9 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfwp.2022.342020.1211 | ||
نویسندگان | ||
صالح قهرمانی1؛ سحاب حجازی* 2؛ سهیلا ایزدیار3؛ اشتفن فیشر4؛ علی عبدالخانی5 | ||
1دانشجوی دکتری علوم و صنایع چوب و کاغذ، دانشکده منابع طبیعی دانشگاه تهران، کرج | ||
2دانشیار، گروه علوم و مهندسی کاغذ، دانشکدۀ مهندسی چوب و کاغذ، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان | ||
3استادیار، گروه علوم و صنایع چوب و کاغذ، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج | ||
4استاد، مؤسسۀ شیمی چوب، دانشگاه فنی درسدن، آلمان | ||
5دانشیار، گروه علوم و صنایع چوب و کاغذ، دانشکدۀ منابع طبیعی، دانشگاه تهران، کرج | ||
چکیده | ||
در این پژوهش، تولید نانوکریستالهای لیگنوسلولزی (LCNCs) و نانوفیبریلهای لیگنوسلولزی (LCNFs) با استفاده از استخراج قلیایی سرد (CCE) بهعنوان پیشتیمار قلیایی بر خمیرکاغذ مونواتانولآمین (MEA) باگاس بررسی شد. تیمار استخراج قلیایی سرد با خالصسازی سلولز، استخراج همیسلولزها و همچنین تورم الیاف میتواند کارایی تولید و ویژگیهای حرارتی و مورفولوژیکی LCNCs و LCNFs را بهبود بخشد. تیمار بهینۀ استخراج قلیایی سرد با استفاده از هیدروکسید سدیم 10 درصد، دمای 20 درجۀ سانتیگراد و زمان 1 ساعت روی خمیرکاغذ انجام گرفت. تولید LCNCs با فرایند هیدرولیز اسیدی با استفاده از اسیدسولفوریک 64 درصد، زمان 45 دقیقه، دمای 45 درجۀ سانتیگراد و تولید LCNFs با استفاده از دستگاه میکروسیالساز با عبور از سه تیغه با قطرهای 50، 100 و 200 میکرومتر بهترتیب بهمدت دو، چهار و شش ساعت انجام گرفت. براساس تصاویر SEM، تیمار استخراج قلیایی سرد، میانگین قطر LCNCs را از 91/66 نانومتر به 63/34 نانومتر و میانگین قطرLCNFs را از 13/27 به 35/17 کاهش داد. همچنین نتایج اندازهگیریXRD نشان داد که تیمار استخراج قلیایی سرد، بلورینگی LCNCs را از 31/87 به 84/93 و بلورینگی LCNFs را از 68/81 به 47/83 افزایش داد. براساس نتایج آنالیز گرماسنجی حرارتیTGA و DTG نیز استخراج قلیایی سرد، پایداری حرارتی نانولیگنوسلولزها را افزایش میدهد. همچنین نتایج FTIR کاهش مقدار همیسلولزها و لیگنین را از سطح الیاف در اثر استخراج قلیایی سرد تأیید میکنند. در کل نتایج نشاندهندۀ بهبود و اصلاح خواص نانولیگنوسلولزها با استفاده از پیشتیمار ساده و سریع است. | ||
کلیدواژهها | ||
استخراج قلیائی سرد (CCE)؛ باگاس؛ خمیرکاغذ مونواتانول آمین (MEA)؛ نانوفیبریل لیگنوسلولزی (LCNF)؛ نانوکریستال لیگنوسلولزی (LCNC) | ||
مراجع | ||
[1]. Mehanny, S., Ibrahim, H., Darwish, L., Farag, M., El-Habbak, A.H.M., and El-Kashif, E. (2020). Effect of Environmental Conditions on Date Palm Fiber Composites. In Date Palm Fiber Composites; Springer, 287–320. [2]. George, J., and Sabapathi, S.N. (2015). Cellulose nanocrystals: synthesis, functional properties, and applications, Nanotechnology, Science and Applications, 45-50. [3]. Nechyporchuk, O., Belgacem, M.N., and Bras, J. (2015) Production of cellulose nanofibrils: A review of recent advances. Industrial Crops and Products., 93, 2–25. [4]. Wang, Y., Liu, SH., Wang, Q., Fu, X., and Fatehi, P. (2020). Performance of polyvinyl alcohol hydrogel reinforced with lignin-containing cellulose nanocrystals, Cellulose, 27:8725–8743. [5]. Ewulonu, CH, M., Liu. X., Wu, M., and Huang, Y. (2019). Ultrasound-assisted mild sulphuric acid ball milling preparation of lignocellulose nanofibers (LCNFs) from sunflower stalks (SFS), Cellulose, 26: 4371-4389. [6]. Bian, H., Chen, L., Dai, H., and Zhu, J.Y. (2017). Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylicacid, Carbohydrate Polymers, 167, 167-176. [7]. Li, P., Sirviö, A., Haapala., and Liimatainen, H. (2017). Cellulose nanofibrils from nonderivatizing urea-based deep eutectic solvent pretreatments. ACS, Applied Materials & Interfaces, 9, 2846–2855. [8]. Hedjazi, S., Kordsachia, O., Patt, R., and Kreipl, A. (2009). MEA/water/AQ- pulping of wheat straw. Holzforschung, 63(5):505-512. [9]. Colodette, J. L., and Gomes, F. J. B. (2014). A novel approach for maximizing eucalypt kraft pulp yield and bleachability. Journal of Schience and Technology for Forest Products and Processes, 4(5):38-44. [10]. Hutterer, C., Schild, G., and Potthastp, A. (2016). A precise study on effects that trigger alkaline hemicellulose extraction efficiency. Bioresource Technology, 214, 460-467. [11]. Chen, Y., Zhang, H., Feng, X., Liang, M., Zhang, Y., and Dai, H. (2021). Lignocellulose nanocrystals from pineapple peel: Preparation, characterization and application as efficient Pickering emulsion stabilizers, Food Research International 150, 110738 [12]. Kim, J.S., Lee, Y.Y., and Kim, T.H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology. 199, 42–48. [13]. Herrera, M., Thitiwutthisakul, K., Yang, X., Rujitanaroj, P., Rojas, R., and Berglund, L. (2018). Preparation and evaluation of high-lignin content cellulose nanofibrils from eucalyptus pulp. Cellulose, 25(5), 3121–3133. [14]. Huang, B., He, H., Liu, H., Zhang, Y., Peng, X., and Wang, B. (2020). Multi-typecellulose nanocrystals from sugarcane bagasse and their nanohybrids constructed with polyhedral oligomericsilsesquioxane. Carbohydrate Polymers, 227:115368. [15]. Li, Q., and Renneckar, S. (2011). Supramolecular structure characterization of molecularly thin cellulose In Nanoparticles. Biomacromolecules, 12, 650–659. [16] Zhang, B., Huang, Ch., Zhao, H., Wang, J., Yin, C., Zhang, L., and Zhao, Y. (2019). Efects of cellulose nanocrystals and cellulose nanofibers on the structure and properties of polyhydroxybutyrate nanocomposites, Polymers, 11, 2063. [17]. Bilatto, S., Marconcini, J. M., Mattoso, L. H. C., and Farinas, C. S. (2020). Lignocellulose nanocrystals from sugarcane straw. Industrial Crops and Products, 157, 112938. [18]. Huang, L., Yang, Z., Li, M., Liu, Z., Qin, C., Nie, S., and Yao, S. (2020). Effect of pre-corrected pH on the carbohydrate hydrolysis of bamboo during hydrothermal pretreatment. Polymers, 12(3), 612. [19]. Dai, H., Ou, S., Liu, Z., and Huang, H. (2017). Pineapple peel carboxymethyl cellulose/ polyvinyl alcohol/mesoporous silica SBA-15 hydrogel composites for papain immobilization. Carbohydrate Polymers, 169, 504–514. [20] Doh, H., Lee, M. H., and Whiteside, W. S. (2020). Physicochemical characteristics of cellulose nanocrystals isolated from seaweed biomass. Food Hydrocolloids, 102, 105542. | ||
آمار تعداد مشاهده مقاله: 251 تعداد دریافت فایل اصل مقاله: 274 |