- Abe, K., & Ohya, Y. (2004). An investigation of flow fields around flanged diffusers using CFD. Journal of Wind Engineering and Industrial Aerodynamics, 92(3–4), 315–330. https://doi.org/10.1016/j.jweia.2003.12.003.
- Abohela, I., Hamza, N., & Dudek, S. (2013). Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines. Renewable Energy, 50, 1106–1118. https://doi.org/10.1016/j.renene.2012.08.068.
- Alamdari, P., Nematollahi, O., & Alemrajabi, A. (2019). Investigating the potential of wind energy in Qazvin province for the construction of a wind power plant. 5th Conference and Exhibition on Environmental Engineering.
- Anderson, D. ., Whale, J., Livingston, P. ., & CHAN, D. (2008). Rooftop Wind Resource Assessment using a Three-Dimensional Ultrasonic Anemometer (p. 7). Murdoch University.
- Ayhan, D., & Sağlam, Ş. (2012). A technical review of building-mounted wind power systems and a sample simulation model. Renewable and Sustainable Energy Reviews, 16(1), 1040–1049. https://doi.org/ 10.1016/ j.rser. 2011.09.028.
- Bataineh, K., & Alrabee, A. (2018). Improving the energy efficiency of the residential buildings in Jordan. Buildings, 8(7), 1–16. https://doi.org/10.3390/buildings8070085.
- Biglari, M., Assareh, E., Nedaei, M., & Poultangari, I. (2014). Feasibility study and economic evaluation of wind energy in north of Khuzestan province : case study of shush-tar. Iranian Journal of Energy, 17(1).
- Blackmore, P. (2008). Siting Micro-Wind Turbines on House Roofs. BRE Press.
- Bobrova, D. (2015). Building-integrated wind turbines in the aspect of architectural shaping. Procedia Engineering, 117(1), 404–410. https://doi.org/10.1016/j.proeng.2015.08.185.
- Cace, J., Horst, E., Syngellakis, K., Niel, M., Clement, P., Heppener, R., & Peirano, E. (2007). Urban wind turbines - guidlines for small wind turbines in the built environment. 1–41.
- Calautit, K., Aquino, A., Calautit, J. K., Nejat, P., Jomehzadeh, F., & Hughes, B. R. (2018). A review of numerical modelling of multi-scale wind turbines and their environment. Computation, 6(1), 1–37. https://doi.org/ 10.3390/ computation6010024.
- Chang, R.-D., Zuo, J., Zhao, Z.-Y., Zillante, G., Gan, X.-L., & Soebarto, V. (2017). Evolving theories of sustainability and firms: History, future directions and implications for renewable energy research. Renewable and Sustainable Energy Reviews, 72, 48–56. https://doi.org/10.1016/j.rser.2017.01.029.
- Cho, K. P., Jeong, S. H., & Sari, D. P. (2011). Harvesting wind energy from aerodynamic design for building integrated wind turbines. International Journal of Technology, 2(3), 189–198. https://doi.org/10.14716/ ijtech. v2i3.1056.
- Dabiri, J. O. (2011). Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays. Journal of Renewable and Sustainable Energy, 3(4). https://doi.org/ 10.1063/ 1.3608170.
- Dutton, Andrew & Halliday, Jim & Blanch, MJ. (2005). The Feasibility of Building-Mounted/Integrated Wind Turbines (BUWTs): Achieving their potential for carbon emission reductions. Final Report of Carbon Trust Contract 2002-07-028-1-6.
- Farsi, S., & Nazari, M. (2018). Optimal Height for a Wind Tower on a Building in Yazd. Iranian Journal of Energy, 20(4), 101-112.
- Heo, Y. G., Choi, N. J., Choi, K. H., Ji, H. S., & Kim, K. C. (2016). CFD study on aerodynamic power output of a 110 kW building augmented wind turbine. Energy and Buildings, 129, 162–173. https://doi.org/ 10.1016/ j.enbuild.2016.08.004.
- Jafari, S. A. H., & Kosasih, B. (2014). Flow analysis of shrouded small wind turbine with a simple frustum diffuser with computational fluid dynamics simulations. Journal of Wind Engineering and Industrial Aerodynamics, 125, 102–110. https://doi.org/10.1016/j.jweia.2013.12.001.
- Jahangiri, M., Aghaei, E., & Zamani, M. (2012). Investigating renewable wind energy potential in Qazvin province, case study: Shoorje station. 2nd Conference on Environmental Planning and Management.
- KC, A., Whale, J., & Urmee, T. (2019). Urban wind conditions and small wind turbines in the built environment: A review. Renewable Energy, 131, 268–283. https://doi.org/10.1016/j.renene.2018.07.050.
- Ledo, L., Kosasih, P. B., & Cooper, P. (2011). Roof mounting site analysis for micro-wind turbines. Renewable Energy, 36(5), 1379–1391. https://doi.org/10.1016/j.renene.2010.10.030.
- Lee, K. Y., Tsao, S. H., Tzeng, C. W., & Lin, H. J. (2018). Influence of the vertical wind and wind direction on the power output of a small vertical-axis wind turbine installed on the rooftop of a building. Applied Energy, 209(May), 383–391. https://doi.org/10.1016/j.apenergy.2017.08.185.
- Lu, L., & Ip, K. Y. (2009). Investigation on the feasibility and enhancement methods of wind power utilization in high-rise buildings of Hong Kong. Renewable and Sustainable Energy Reviews, 13(2), 450–461. https://doi.org/10.1016/j.rser.2007.11.013.
- Lu, L., & Sun, K. (2014). Wind power evaluation and utilization over a reference high-rise building in urban area. Energy and Buildings, 68, 339–350. https://doi.org/10.1016/j.enbuild.2013.09.029.
- Minh Bui, D., & Melis, W. J. C. (2013). Micro Wind Turbines for Energy Gathering in Build Up Areas. International Journal of Sustainable Energy Development, 2(2), 105–114. https://doi.org/10.20533/ ijsed.2046. 3707.2013.0016.
- Minner, K. (2010). Marina + Beach Towers / Oppenheim Architecture + Design. Archdaily.Com. https://www.archdaily.com/ 87669/marina- beach- towers- oppenheim- architecture- design? ad_ medium= bookmark- recommendation & ad_name=iframe-modal.
- Nasarullah Chaudhry, H., Kaiser Calautit, J., & Richard Hughes, B. (2014). The Influence of Structural Morphology on the Efficiency of Building Integrated Wind Turbines (BIWT). AIMS Energy, 2(3), 219–236. https://doi.org/10.3934/energy.2014.3.219.
- Padmanabhan, K. K. (2013). Study on increasing wind power in buildings using TRIZ Tool in urban areas. Energy and Buildings, 61, 344–348. https://doi.org/10.1016/j.enbuild.2012.11.038.
- Park, J., Jung, H. J., Lee, S. W., & Park, J. (2015). A new building-integrated wind turbine system utilizing the building. Energies, 8(10), 11846–11870. https://doi.org/10.3390/en81011846.
- Rafailidis, S. (1997). Influence of building areal density and roof shape on the wind characteristics above a town. Boundary-Layer Meteorology, 85(2), 255–271. https://doi.org/10.1023/A:1000426316328.
- Ramin, H., & Karimi, H. (2020). Optimum envelope design toward zero energy buildings in Iran. E3S Web of Conferences, 172, 16004. https://doi.org/10.1051/e3sconf/202017216004.
- Sari, D. P. (2015). Measurement of the Influence of Roof Pitch to Increasing Wind Power Density. Energy Procedia, 65, 42–47. https://doi.org/10.1016/j.egypro.2015.01.029.
- Toja-Silva, F., Lopez-Garcia, O., Peralta, C., Navarro, J., & Cruz, I. (2016). An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings. Applied Energy, 164, 769–794. https://doi.org/10.1016/j.apenergy.2015.11.095.
- Wang, B., Cot, L. D., Adolphe, L., & Geoffroy, S. (2017). Estimation of wind energy of a building with canopy roof. In Sustainable Cities and Society (Vol. 35). Elsevier B.V. https://doi.org/10.1016/j.scs.2017.08.026.
- Wang B, Cot LD, Adolphe L, Geoffroy S, Morchain J. (2015). Estimation of wind energy over roof of two perpendicular buildings. In Energy and Buildings. 88:57-67. DOI: 10.1016/j.enbuild.2014.11.072.
- Wang, C., & Prinn, R. G. (2010). Potential climatic impacts and reliability of very large-scale wind farms. Atmospheric Chemistry and Physics, 10(4), 2053–2061. https://doi.org/10.5194/acp-10-2053-2010.
- Yang, A. S., Su, Y. M., Wen, C. Y., Juan, Y. H., Wang, W. S., & Cheng, C. H. (2016). Estimation of wind power generation in dense urban area. Applied Energy, 171. https://doi.org/10.1016/j.apenergy.2016.03.007.
- Zhou, H., Lu, Y., Liu, X., Chang, R., & Wang, B. (2017). Harvesting wind energy in low-rise residential buildings: Design and optimization of building forms. Journal of Cleaner Production, 167, 306–316. https://doi.org/ 10.1016/j.jclepro.2017.08.166.
|