- Al-Helali, B., Chen, Q., Xue, B., & Zhang, M. (2021). A new imputation method based on genetic programming and weighted KNN for symbolic regression with incomplete data. Soft Computing, 1-20.
- Aljuaid, T., & Sasi, S. (2016). Proper imputation techniques for missing values in data sets. 2016 International Conference on Data Science and Engineering (ICDSE).
- Andiojaya, A., & Demirhan, H. (2019). A bagging algorithm for the imputation of missing values in time series. Expert Systems with Applications, 129, 10-26.
- Ashrafi, K., & Ahmadi Orkomi, A. (2014). Atmospheric stability analysis andits correlationwith the concentration of air pollutants: a case study ofa critical air pollution episode in Tehran. Iranian Geophys, 8(3), 49-61.
- Ashrafi, K., & Hoshyaripour, G. A. (2010). A model to determine atmospheric stability and its correlation with CO concentration. International Journal of Civil and Environmental Engineering, 2(2), 82-88.
- Bokde, N., Beck, M. W., ءlvarez, F. M., & Kulat, K. (2018). A novel imputation methodology for time series based on pattern sequence forecasting. Pattern Recognition Letters, 116, 88-96.
- Caillault, É. P., Lefebvre, A., & Bigand, A. (2020). Dynamic time warping-based imputation for univariate time series data. Pattern Recognition Letters, 139, 139-147.
- Engels, J. M., & Diehr, P. (2003). Imputation of missing longitudinal data: a comparison of methods. Journal of clinical epidemiology, 56(10), 968-976.
- Flores, A., Tito, H., & Centty, D. (2019). Model for time series imputation based on average of historical vectors, fitting and smoothing. IJACSA) International Journal of Advanced Computer Science and Applications, 10(10), 346-352.
- Flores, A., Tito, H., & Silva, C. (2019). Local average of nearest neighbors: Univariate time series imputation. International Journal of Advanced Computer Science and Applications, 10(8), 45-50.
- Ghazali, S. M., Shaadan, N., & Idrus, Z. (2020). Missing data exploration in air quality data set using R-package data visualisation tools. Bulletin of Electrical Engineering and Informatics, 9(2), 755-763.
- Hadeed, S. J., O'Rourke, M. K., Burgess, J. L., Harris, R. B., & Canales, R. A. (2020). Imputation methods for addressing missing data in short-term monitoring of air pollutants. Science of the Total Environment, 730, 139-140.
- Hamami, F., & Dahlan, I. A. (2020). Univariate Time Series Data Forecasting of Air Pollution using LSTM Neural Network. 2020 International Conference on Advancement in Data Science, E-learning and Information Systems (ICADEIS).
- Junger, W., & De Leon, A. P. (2015). Imputation of missing data in time series for air pollutants. Atmospheric Environment, 102, 96-104.
- Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J., & Kolehmainen, M. (2004). Methods for imputation of missing values in air quality data sets. Atmospheric Environment, 38(18), 2895-2907.
- Kowarik, A., & Templ, M. (2016). Imputation with the R Package VIM. Journal of Statistical Software, 74(7), 1-16.
- Liu, X., Wang, X., Zou, L., Xia, J., & Pang, W. (2020). Spatial imputation for air pollutants data sets via low rank matrix completion algorithm. Environment international, 139, 105713.
- Mishchuk, O., Tkachenko, R., & Izonin, I. (2019). Missing data imputation through SGTM neural-like structure for environmental monitoring tasks. International Conference on Computer Science, Engineering and Education Applications.
- Noor, N. M., Yahaya, A. S., Ramli, N. A., & Al Bakri Abdullah, M. M. (2015). Filling the missing data of air pollutant concentration using single imputation methods. In Applied Mechanics and Materials(Vol. 754, pp. 923-932). Trans Tech Publications Ltd.
- Plaia, A., & Bondi, A. (2006). Single imputation method of missing values in environmental pollution data sets. Atmospheric Environment, 40(38), 7316-7330.
- Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
- Shaadan, N., & Rahim, N. (2019). Imputation Analysis for Time Series Air Quality (PM10) Data Set: A Comparison of Several Methods. Journal of Physics: Conference Series,
- Shahbazi, H., Karimi, S., Hosseini, V., Yazgi, D., & Torbatian, S. (2018). A novel regression imputation framework for Tehran air pollution monitoring network using outputs from WRF and CAMx models. Atmospheric Environment, 187, 24-33.
- Tito, H., Flores, A., & Silva, C. (2019). Local average of nearest neighbors: univariate time series imputation. International Journal of Advanced Computer Science and Applications, 10(8), 45-50.
- Tran, B. N. (2018). Evolutionary computation for feature manipulation in classification on high-dimensional data.Victoria University of Wellington.
- Tran, C. T., Zhang, M., Andreae, P., & Xue, B. (2017, July). Multiple imputation and genetic programming for classification with incomplete data. In Proceedings of the Genetic and Evolutionary Computation Conference(pp. 521-528).
- Yicun, G., Mohammad Khorshiddoust, A., Mohammadi, G. H., Hoseini Sadr, A., & Aghlmand, F. (2020). The relationship between PM2. 5 concentrations and atmospheric conditions in severe and persistent urban pollution in Tabriz, northwest of Iran. Arabian Journal of Geosciences, 13(5), 1-12.
- Yuan, H., Xu, G., Yao, Z., Jia, J., & Zhang, Y. (2018, October). Imputation of missing data in time series for air pollutants using long short-term memory recurrent neural networks. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers(pp. 1293-1300).
- Zeileis, A., & Grothendieck, G. (2005). Zoo: S3 infrastructure for regular and irregular time series. ArXiv preprint math/0505527.
|