تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,901 |
تعداد دریافت فایل اصل مقاله | 97,217,673 |
Disinfection of biologically treated wastewater using photocatalysis process with artificial UV light and natural Solar radiation | ||
Pollution | ||
دوره 9، شماره 1، فروردین 2023، صفحه 332-343 اصل مقاله (745.97 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2022.347229.1575 | ||
نویسندگان | ||
Salam K. Al- Dawery1؛ Sreedhar Reddy* 2؛ Khaloud Al-Mashrafiya1؛ Buthina Al-Fraji1؛ Muataz Salam Al-Daweri3 | ||
1Department of Chemical Engineering, College of Engineering and Architecture, University of Nizwa, Nizwa, Sultanate of Oman | ||
2Department of Civil and Environmental Engineering, College of Engineering and Architecture, University of Nizwa, Nizwa, Sultanate of Oman | ||
3Xiamen University, Malaysia | ||
چکیده | ||
The goal of this research was to investigate the efficacy photocatalysis with natural solar radiation and artificial UV radiation for disinfecting total coliforms in biologically treated wastewater. The effect of TiO2 dosage and irradiation time on total coliform inactivation as measured by log reduction values (LRV), removal of BOD, COD, turbidity, and effluent properties as measured by pH and conductivity was investigated. Two sets of experimental equipment were constructed, one for using solar UV light and the other for using artificial UV light. After four hours of irradiation with 60 mg/L TiO2, photocatalysis achieved LRVs of 1.4 and 1, respectively, under UV and solar radiation. COD and BOD were reduced by 67% and 50% respectively under UV and solar radiation after two hours of irradiation with 60 mg/L TiO2. Turbidity was reduced by 71%. Both conductivity and acidity of the effluent were reduced as TiO2 concentration was increased. Photocatalysis with natural solar radiation produced disinfection results that were comparable to that of efficient UV light exposure. Artificial UV light and natural solar radiation can be combined in photocatalysis process to form a hybrid process. | ||
کلیدواژهها | ||
Log reduction values Titanium dioxide؛ Photo-oxidation؛ Wastewater؛ COD؛ BOD | ||
مراجع | ||
Adegoke, A. A., Amoah, I. D., Stenström, T. A., Verbyla, M. E. and Mihelcic, J. R. (2018). Epidemiological evidence and health risks associated with agricultural reuse of partially treated and untreated wastewater: A Review. Front. Public Health., 6. Al-Dawery, S.K. (2013). Photocatalyst degradation of Tartrazine compound in wastewater using TiO2 and UV light. J. Eng Sci and Tech., 8(6); 683-691. Antwi-Agyei, P., Biran, A., Peasey, A., Bruce, J. and Ensink, J. (2016). A faecal exposure assessment of farm workers in Accra, Ghana: A Cross Sectional Study. BMC Public Health, 16(1). APHA(2017), Standard methods for the examination of water and wastewater, Washington D.C: American Public Health Association, American Water works Association, Water pollution control Federations. Alturki, A. (2022). The global carbon footprint and how new carbon mineralization technologies can be used to reduce CO2 emissions. Chem.engineering., 6(3); 44. Barreca, S., Velez Colmenares, J. J., Pace, A., Orecchio, S. and Pulgarin, C. (2015). Escherichia coli inactivation by neutral solar heterogeneous photo-fenton (HPF) over hybrid iron/montmorillonite/alginate beads. J. Environ. Chem. Eng., 3(1); 317–324. Biglari, H., Afsharnia, M., Alipour, V., Khosravi, R., Sharafi, K. and Mahvi, A. H. (2016). A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and Paper Industry. Environ. Sci. Pollut. Res., 24(4); 4105–4116. Chakrabarti, S. and Dutta, B. (2004). Photocatalytic degradation of model textile dyes in wastewater using Zno as semiconductor catalyst. J. Hazard. Mater., 112(3); 269–278. Chaúque, B. J.and Rott, M. B. (2021). Solar disinfection (SODIS) technologies as alternative for large-scale public drinking water supply: Advances and challenges. Chemosphere, 281; 130754. Collivignarelli, M., Abbà, A., Benigna, I., Sorlini, S. and Torretta, V. (2017). Overview of the main disinfection processes for wastewater and drinking water treatment plants. Sustainability, 10(2); 86. Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D. and Pillai, S. C. (2015). Visible-light activation of TIO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C ., 25; 1–29. Feroz, S., Jesil, A., Baawain, M. and Sarkar, J. P. (2014). Studies on wastewater treatment using solar photocatalysis in Oman. Appl. Mech. Mater., 535; 106–109. Fotiou, T., Triantis, T., Kaloudis, T. and Hiskia, A. (2015). Photocatalytic degradation of cylindrospermopsin under UV-A, solar and visible light using tio2. mineralization and intermediate products. Chemosphere, 119. García-Fernández, I., Fernández-Calderero, I., Polo-López, M. I. and Fernández-Ibáñez, P. (2015). Disinfection of urban effluents using solar tio2 photocatalysis: A study of significance of dissolved oxygen, temperature, type of microorganism and water matrix. Catal. Today., 240; 30–38. Gelover, S., Gómez, L. A., Reyes, K.and Teresa Leal, M. (2006). A practical demonstration of water disinfection using tio2 films and sunlight. Water Res., 40(17); 3274–3280. Ghaly, M. Y., Jamil, T. S., El-Seesy, I. E., Souaya, E. R. and Nasr, R. A. (2011). Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2. Chem. Eng. J., 168(1); 446–454. Ghernaout, D. and Elboughdiri, N. (2020). Is not it time to stop using chlorine for treating water? OALib, 07(01); 1–11. Giannakis, S., Darakas, E., Escalas-Cañellas, A. and Pulgarin, C. (2015). Solar disinfection modeling and post-irradiation response of escherichia coli in wastewater. Chem. Eng. J., 281; 588–598. Gopinath, K. P., Madhav, N. V., Krishnan, A., Malolan, R. and Rangarajan, G. (2020). Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A Review. J. Environ. Manag., 270; 110906. Helali, S., Polo-López, M. I., Fernández-Ibáñez, P., Ohtani, B., Amano, F., Malato, S. and Guillard, C. (2014). Solar photocatalysis: A green technology for E. coli contaminated water disinfection. effect of concentration and different types of suspended catalyst. J. Photochem. Photobiol. A,, 276; 31–40. Hong, P.-Y., Julian, T., Pype, M.-L., Jiang, S., Nelson, K., Graham, D., Pruden, A. and Manaia, C. (2018). Reusing treated wastewater: Consideration of the safety aspects associated with antibiotic-resistant bacteria and antibiotic resistance genes. Water, 10(3):244. Khan, M. M., Siddiqi, S. A., Farooque, A. A., Iqbal, Q., Shahid, S. A., Akram, M. T., Rahman, S., Al-Busaidi, W. and Khan, I.(2022). Towards sustainable application of wastewater in agriculture: A review on Reusability and risk assessment. Agronomy., 12(6); 1397. Krzeminska, D., Neczaj, E.and Borowski, G. (2015). Advanced oxidation processes for food industrial wastewater decontamination. J. Ecol. Eng. 16(2); 61-71. Li, H. Y., Osman, H., Kang, C. W. and Ba, T. (2017). Numerical and experimental investigation of UV disinfection for water treatment. Appl. Therm. Eng., 111; 280–291. Liu, S.-S., Qu, H.-M., Yang, D., Hu, H., Liu, W.-L., Qiu, Z.-G., Hou, A.-M., Guo, J., Li, J.-W., Shen, Z.-Q. and Jin, M. (2018). Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Res., 136; 131–136. Malato, S., Maldonado, M. I., Fernández-Ibáñez, P., Oller, I., Polo, I. and Sánchez-Moreno, R. (2016). Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the plataforma solar de almeria. Mater. Sci. Semicond. Process., 42;15–23. Mecha, A.C., Onyango, M.S., Ochieng, A. and Momba, M.N.B.(2019). UV and solar photocatalytic disinfection of municipal wastewater: Inactivation, reactivation and regrowth of bacterial pathogens. Int. J. Environ. Sci. Technol., 16; 3687–3696. Moscow, S., Kavinkumar, V., Sriramkumar, M., Jothivenkatachalam, K., Saravanan, P., Rajamohan, N., Vasseghian, Y.and Rajasimman, M. (2022). Impact of erbium (ER) and yttrium (Y) doping on bivo4 crystal structure towards the enhancement of photoelectrochemical water splitting and photocatalytic performance. Chemosphere, 299; 134343. Narkbuakaew, T., Sattayaporn, S., Saito, N. and Sujaridworakun, P. (2022). Investigation of the AG species and synergy of AG-tio2 and G-C3N4 for the enhancement of photocatalytic activity under UV–visible light irradiation. Appl. Surf. Sci., 573; 151617. Ortega-Gómez, E., Esteban García, B., Ballesteros Martín, M. M., Fernández Ibáñez, P. and Sánchez Pérez, J. A. (2014). Inactivation of natural enteric bacteria in real municipal wastewater by solar photo-fenton at neutral ph. Water Res., 63; 316–324. Paleologou, A., Marakas, H., Xekoukoulotakis, N. P., Moya, A., Vergara, Y., Kalogerakis, N., Gikas, P.and Mantzavinos, D. (2007). Disinfection of water and wastewater by Tio2 photocatalysis, sonolysis and UV-C irradiation. Catalysis Today., 129(1-2), 136–142. Pandian, A. M., Rajamehala, M., Singh, M. V., Sarojini, G., & Rajamohan, N. (2022). Potential risks and approaches to reduce the toxicity of disinfection by-product – A Review. Sci. Total Environ., 822; 153323. Polo-López, M. I., Fernández-Ibáñez, P., Ubomba-Jaswa, E., Navntoft, C., García-Fernández, I., Dunlop, P. S. M., Schmid, M., Byrne, J. A. and McGuigan, K. G. (2011). Elimination of water pathogens with solar radiation using an automated sequential batch CPC Reactor. J. Hazard. Mater., 196; 16–21. Poulopoulos, S. G., Yerkinova, A., Ulykbanova, G. and Inglezakis, V. J. (2019). Photocatalytic treatment of organic pollutants in a synthetic wastewater using UV light and combinations of TiO2, H2O2 and Fe(iii). PLOS ONE, 14(5). Reddy Sajjala, S., Al Dawery, S., Ahmed, A. and Al jabri, M. (2019). Disinfection of total coliform bacteria in Falaj water by solar water disinfection (SODIS). Casp. J. Environ. Sci., 17(4); 285-294. Regulations for wastewater reuse and discharge, Ministerial decision (MD) 145/93, Ministry regional municipalities and Environment, Sultanate of Oman. Sadiq, R., Rodriguez, M. J. and Mian, H. R. (2019). Empirical models to predict disinfection by-products (dbps) in Drinking water: An updated review. Arch. Environ. Health., 324–338. Sajjadi, S.A., Asgari, G., Biglari, H. and Chavoshani, A. (2016). Pentachlorophenol removal by persulfate and microwave processes coupled from aqueous environments. J. Eng. Appl. Sci., 11(5); 1058-1064. Serrano, M. A.and Moreno, J. C. (2020). Spectral transmission of solar radiation by plastic and glass materials. J. Photochem. Photobiol. B: Biol., 208; 111894. Tortajada, C. (2020). Contributions of recycled wastewater to clean water and Sanitation Sustainable Development Goals. Npj Clean Water., 3(1). Venieri, D., Mantzavinos, D. and Binas, V. (2020). Solar photocatalysis for emerging micro-pollutants abatement and water disinfection: A mini-review. Sustainability, 12(23); 10047. Voulvoulis, N. (2018). Water reuse from a circular economy perspective and potential risks from an unregulated approach. Curr. Opin. Environ. Sci. Health., 2; 32–45. https://doi.org/10.1016/j.coesh.2018.01.005 Zhang, T., Wang, X. and Zhang, X. (2014). Recent progress in TiO2 mediated solar photocatalysis for industrial wastewater treatment. Int. J. Photoenergy., 2014; 1–12. | ||
آمار تعداد مشاهده مقاله: 310 تعداد دریافت فایل اصل مقاله: 460 |