تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,532 |
تعداد دریافت فایل اصل مقاله | 97,217,316 |
Application of the Multilayer Analysis to Contaminant Transport along Porous Media Flow with Variable Coefficients and two-input Sources | ||
Pollution | ||
دوره 9، شماره 1، فروردین 2023، صفحه 222-242 اصل مقاله (1.13 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2022.345098.1520 | ||
نویسندگان | ||
Thomas Tjock-Mbaga* 1؛ Ali Zarma2؛ Patrice Ele Abiama1، 3؛ Jean-Marie Ema'a Ema'a4؛ Germain Hubert Ben-Bolie1 | ||
1Laboratory of Nuclear Physics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Cameroon | ||
2Department of physics, University of Maroua, P.O. Box 814, Maroua Cameroon | ||
3Nuclear Technology Section, Energy Research Laboratory, Institute of Geological and Mining Research, Yaounde, Cameroon | ||
4Higher Teacher Training College, Department of physics, University of Bertoua, P.O. Box 652, Cameroon | ||
چکیده | ||
This study presents a new approach to solve the one-dimensional solute transport equation with variable coefficients and two input sources in a finite porous media. The medium is divided into m-layers porous media with constant averages coefficients in each transport problem. The transport equations in layer i-1 and i are coupled by imposing the continuity of solute concentration and the dispersive flux at the interfaces of the layers. Unknown functions representing the dispersive flux at the interfaces between adjacent layers are introduced allowing the multilayer problem to be solved separately on each layer in the Laplace domain before being numerical inverted back to the time domain. The obtained solution was compared with the Generalized Integral Transform Technique (GITT) and numerical solutions for some problems of solute transport with variables coefficients in porous medium present in the literature. The results show a good agreement between both solutions for each of the studied problem. An example of application considering an advective-dispersive transport problem with a sinusoidal time-dependent emitting rate at the boundary was study in order to illustrate the effect of sinusoidal frequency on solute concentration. | ||
کلیدواژهها | ||
Advection-dispersion؛ Multilayer model؛ Laplace transform؛ Two sources؛ finite domain | ||
مراجع | ||
Al-Niami., A. N. S and Rushton K. R. (1979). Dispersion in stratified porous media. Water Resour. Res., 15 (5); 1044-1048. Bharati, V. K., Singh, V. P., Sanskrityayn, A. and Kumar, N. (2017). Analytical solution of advection diffusion equation with spatially dependent dispersivity. J. Eng. Mech., 143(11); 1–11. Bharati, V. K., Singh, V. P., Sanskrityayn, A. and Kumar, N. (2018). Analytical solutions for solute transport from varying pulse source along porous media flow with spatial dispersivity in fractal & Euclidean framework. Eur. J. Mech. B Fluids, 72; 410–421. Bharati, V. K., Singh, V. P., Sanskrityayn, A. and Kumar, N. (2019). Analytical solution for solute transport from a pulse point source along a medium having concave/convex spatial dispersivity within fractal and Euclidean framework. J. Earth Syst. Sci., 128(203). Carr, E. J., Turner, I. W. (2016). A semi-analytical solution for multilayer diffusion in a composite medium consisting of a large number of layers. Appl. Math. Model., 40; 7034-7050. Carr, E. J. (2020). New semi-analytical solutions for advection-dispersion equations in multilayer porous media. Transp. Porous Med., 135; 39–58. Carr, E. J. (2021). Generalized semi-analytical solution for coupled multispecies advection-dispersion equations in multilayer porous media. arXiv: 2006.15793v2 [Physics-Comp-Ph] 27 Jan 2021. Chaudhary, M., Kumar, Thakur, C. and Singh, M. K. (2020). Analysis of 1-D pollutant transport in semi-infinite groundwater reservoir. Environmental Earth Sciences (2020) 79(24). Chaudhary M. and Singh, M. K. (2020). Study of multispecies convection-dispersion transport equation with variable parameters. J. Hydrol. 591 (2020) 125562 Chen, J. S., Li, L. Y., Laia, K. H. and Liang, C. P. (2017). Analytical model for advective-dispersive transport involving flexible boundary inputs, initial distributions and zero-order productions. S0022-1694(17)30587-5 DOI: http://dx.doi.org/10.1016/j.jhydrol.2017.08.050. Das, P., Begam, S. and Singh, M. K. (2017). Mathematical modeling of groundwater contamination with varying velocity field. J. Hydrol. Hydromech., 65 (2); 192-204. Djordjevich, A. and Savovic, S. (2013). Solute transport with longitudinal and transverse diffusion in temporally and spatially dependent flow from a pulse type source. Int. J. Heat and Mass Transfer, 65; 321-326. Ema’a Ema’a, J. M., Ben-Bolie, G. H., Ele Abiama, P., Ali Zarma, Owono Ateba, P. (2015). A three-dimensional analytical solution for the study of air pollutant dispersion in a finite layer, Boundary-Layer Meteorol. DOI 10.1007/s10546-014-9997-0 Freeze, R. A. and Cherry, J. A. (1979). Groundwater, Prentice Hall, Englewood Cliffs, NJ. Jaiswal, D. K., Kumar, A., Kumar, N., Singh, M. K. (2011). Solute transport along temporally and spatially dependent flows through horizontal semi-infinite media: dispersion proportional to square of velocity. J. Hydrol. Eng., 16 (3); 228-238. Kumar, A., Jaiswal, D. K. and Kumar, N. (2010). Analytical solutions to one-dimensional advection– diffusion equation with variable coefficients in semi-infinite media. J. Hydrol., 380; 330-337. Kumar, R., Chatterjee, A., Singh, M.K. and Singh, V.P. (2019). Study of solute dispersion with source/sink impact in semi-infinite porous medium. Pollution 6(1); 87-98. Leij, F. J., Dane, J. H., and van Genuchten, M. Th. (1991). Mathematical analysis of one-dimensional solute transport in a layered soil profile. Soil Sci. Soc. Am., J. 55; 944–953. Leij, F. J., van Genuchten, M. Th. (1995). Approximate analytical solutions for solute transport in two-layer porous media. Transp. Porous Med., 18; 65–85. Liu, C., Ball, W. P., and Ellis, J. H. (1998). An analytical solution to the one-dimensional solute advection–dispersion equation in multi-layer porous media. Transp. Porous Med., 30; 25–43. Liu, C., Szecsody, J. E., Zachara, J. M. and Ball, W. P. (2000). Use of the generalized integral transform method for solving equations of solute transport in porous media. Adv. Water Resour, 23; 483–492. Manger, G. E. (1963). Porosity and bulk density of sedimentary rocks. U.S. Atomic Energy Commission USGPO, Washington, D.C. Moreira, D. M., Tirabassi, T., Vilhena, M. T., and Goulart, A. G. (2010). A multi-layer model for pollutant dispersion with dry deposition to the ground. Atmospheric Environ. 44; 1859-1865. Moreira, D. M., Vilhena, M. T., Tirabassi, T., Costa, C., and Bodmann, B. (2006. Simulation of pollutant dispersion in atmosphere by the Laplace transform: the ADMM approach. Water, Air and Soil Pollution, 177; 411–439. Moreira, D. M., Vilhena, M. T., and Buske, D (2009). On the GILTT formulation for pollutant dispersion simulation in the atmospheric boundary layer. Air Pollution and Turbulence: Modeling and Applications, CRC Press, Boca Raton – Flórida (USA), 179–202. Park, E. and Zhan, H. (2001). Analytical solution of contaminant transport from one-, two-, and three-dimensional sources in a finite-thickness aquifer. Journal of Contaminant Hydrology, 53; 41-61. Pérez, Guerrero, J. S., Pimentel, L. C. G., Skaggs, T. H., and van Genuchten, M. Th. (2009). Analytical solution of the advection-diffusion transport equation using a change-of-variable and integral transform technique. Int. J. Heat Mass Transfer, 52(1314); 3297-3304. Pérez, Guerrero, J. S., and Skaggs, T. H. (2010). Analytical solution for one-dimensional advection-dispersion transport equation with distance dependent coefficients. J. Hydrol., 390 (2010) 57–65. Pérez Guerrero, J. S., Pimentel, L. C. G., and Skaggs, T. H. (2010). Analytical solution for the advection-dispersion transport equation in layered media. Int. Journal of Heat and mass transfert, 56(2013); 274-282. Rodrigo, M. R., and Worthy, A. L. (2016). Solution of multilayer diffusion problems via the Laplace transform. J. Math. Anal. Appl. ,444; 475-502. Rumer, R. R. (1962). Longitudinal dispersion in steady and unsteady flow. J Hydraul. Div. 88(HY4); 147-172. Sanskrityayn, A., Bharati, V. K., and Kumar, N. (2016). Analytical solution of advection-dispersion equation with spatiotemporal dependence of dispersion coefficient and velocity using Green’s function method. J. Groundwater Res. 5(1); 24-31. Sanskrityayn, A., Bharati, V. K., and Kumar, N. (2018). Solute transport due to spatio-temporally dependent dispersion coefficient and velocity: analytical solutions. J. Hydrologic Engineering, 23(4); 04018009. Scheidegger, A. E. (19957). The physics of flow through porous media. University of Toronto Press, Toronto. Serrano, S. E. (1992). The form of the dispersion equation under recharge and variable velocity, and its analytical solution. Water Resour. Res., 28(7); 1801-1808. Sim, Y. and Chrysikopoulos, C.V. (1996). One-dimensional virus transport in porous media with time-dependent inactivation rate coefficients. Water Resour. Res. 32(8); 2607–2611. Singh, M. K. and Das, P. (2015). Scale dependent solute dispersion with linear isotherm in heterogeneous medium. J. Hydrol., 520; 289–299. Singh, M. K. and Kumari, P. (2014). Contaminant concentration prediction along unsteady groundwater flow. In: Basu SK, Kumar N (eds) Modelling and simulation of diffusive processes. Springer, Cham, 257–275. Thakur, C. K., Chaudhary, M., van der Zee, S. E. A. T. M. and Singh, M. K. (2019). Two-Dimensional solute transport with exponential initial concentration distribution and varying flow velocity. Pollution, 5(4); 721-737, Autumn 2019. Trefethen, L. N., Weideman, J. A. C., Schmelzer, T. (2006). Talbot quadratures and rational approximations. BIT Numer. Math., 46, 653–670. Yadav, R. R., Kumar, L. K. (2018). Two-dimensional conservative solute transport with temporal and scale-dependent dispersion: analytical solution. International Journal of Advance in Mathematics, 2018 (2), 90-111. Zimmerman, R. A., Jankowski, T. A., Tartakovsky, D. M. (2016). Analytical models of axisymmetric reaction-diffusion phenomena in composite media. Int. J. Heat Mass Tran., 99, 425-431. | ||
آمار تعداد مشاهده مقاله: 277 تعداد دریافت فایل اصل مقاله: 527 |