تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,519 |
تعداد مشاهده مقاله | 124,134,155 |
تعداد دریافت فایل اصل مقاله | 97,240,352 |
برآورد مقدار نیتروژن پوششگیاهی ذرت علوفهای با استفاده از فناوری سنجش از دور چندطیفی هوایی با پهپاد | ||
به زراعی کشاورزی | ||
مقاله 6، دوره 25، شماره 3، شهریور 1402، صفحه 587-602 اصل مقاله (1.28 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2022.341850.2700 | ||
نویسندگان | ||
نیکروز باقری* 1؛ مریم رحیمی جهانگیرلو2؛ مهریار جابری اقدم3 | ||
1نویسنده مسئول، مؤسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی. کرج. ایران. رایانامه: n.bagheri@areeo.ac.ir | ||
2دانشکده فناوری کشاورزی (ابوریحان)، دانشگاه تهران. پاکدشت. ایران. رایانامه: m.rahimi@ut.ac.ir | ||
3گروه زراعت و اکولوژی، دانشگاه آزاد اسلامی واحد ورامین- پیشوا، پیشوا، ایران. رایانامه: mrehyarjaberi@iau.ac.ir | ||
چکیده | ||
هدف: بهمنظور ارائۀ یک روش نوین، غیرمخرب، دقیق و سریع برای برآورد مقدار نیتروژن گیاه ذرت از فناوری سنجش از دور چندطیفی هوایی با پهپاد استفاده شد. روش پژوهش: آزمایشها بهصورت طرح بلوکهای کامل تصادفی در چهار سطح کود نیتروژن (صفر، 50، 100 و 150 درصد مقدار کود بهینه) در شهرستان ورامین در سال زراعی 1397 اجرا شد. نمونهبرداری در دو مرحلۀ کوددهی (هشتبرگی و ظهور گلتاجی) انجام شد. تصویربرداری چندطیفی با پهپاد و نمونهبرداری زمینی، یک هفته پس از هر بار کوددهی انجام شد. پس از پردازش تصاویر، شاخصهای پوششگیاهی شامل NDVI، SR، GI، NRI، MCARI2، MTVI2، TCARI، PSRI و REIP محاسبه شدند و همبستگی آنها با نتایج نمونهبرداری زمینی بهدست آمد. یافته ها: براساس نتایج بهدستآمده از بررسی ضرایب همبستگی (r) و رگرسیون (مدل بهترین زیرمجموعه)، بهترین شاخصها برای برآورد مقدار نیتروژن ذرت علوفهای، شاخص پوششگیاهی تفاضلی نرمالشده (NDVI)، شاخص بازتاب نیتروژن (NIR) و شاخص پوشش گیاهی مثلثی اصلاحشده (MTVI2) در هر دو مرحلۀ رشد هشتبرگی (V8) و ظهور گلتاجی (VT) بودند. در مرحلۀ ظهور گلتاجی، رابطۀ مثبت و معنیداری بین شاخصهای NDVI (001/0P≤، 86/0=R2)، NIR (001/0P≤، 70/0=R2) و MTVI2 (01/0P≤، 46/0=R2) با مقدار نیتروژن ذرت بهدست آمد. نتیجه گیری: براساس یافتههای بهدستآمده، تصویربرداری چندطیفی هوایی با پهپاد دقت قابلقبولی برای برآورد مقدار نیتروژن گیاه ذرت ارائه میدهد. این فناوری میتواند به کشاورزان برای تعیین زمان مناسب کوددهی کمک کند. | ||
کلیدواژهها | ||
پرنده هدایتپذیر از دور؛ تصویربرداری چندطیفی؛ سنجش از دور؛ کشاورزی دقیق؛ کود نیتروژن | ||
مراجع | ||
جابریاقدم، مهریار؛ ممیزی، محمدرضا؛ باقری، نیکروز؛ عزیزی، پیمان و نصری، محمد (1399). تشخیص تنش نیتروژن گیاه ذرت و مخاطرات آن با استفاده از تصویربرداری چندطیفی هوایی به وسیله پهپاد. مدیریت مخاطرات محیطی. 7 (2)، 163-170.
حسینی، سید عارفه؛ مسعودی، حسن؛ سجادیه، سید مجید و آبدانان مهدیزاده، سامان (1398). تعیین مقدار نیتروژن و کلروفیل گیاه نیشکر از روی شاخصهای رنگی تصاویر دیجیتال هوایی با مدلسازی رگرسیونی. مجله علمی کشاورزی مهندس زراعی. 42 (2)، 83-98. References Bagheri, N. (2016). Development of a high-resolution aerial remote sensing system for precision agriculture. International Journal of Remote Sensing, 38(8), 2053-2065. https://doi.org/10.1080/01431161.2016.1225182. Bagheri, N., Bordbar. M. (2014). Solutions for fast development of precision agriculture in Iran. Agric Eng Int: CIGR Journal, 16(3), 119-123. Bagheri, N., Ahmadi, H., Alavipanah, S. K., & Omid, M. (2013). Multispectral remote sensing for site-specific nitrogen fertilizer management. Brazilian Journal of Agricultural Research, 48(10), 1394-1401. https://doi.org/10.1590/S0100-204X2013001000011. Ballester, C., Hornbuckle, J., Brinkhoff, J., Smith, J., & Quayle, W. (2017). Assessment of In-Season Cotton Nitrogen Status and Lint Yield Prediction from Unmanned Aerial System Imagery. Remote Sensing, 9, 1149. https://doi.org/doi:10.3390/rs9111149. Caturegli, L., Corniglia, M., Gaetani, M., Grossi, N., Magni, S., Migliazzi, M., & Volterrani, M. (2016). Unmanned aerial vehicle to estimate nitrogen status of turfgrasses. PloS one, 11(6), e0158268. https://doi.org/10.1371/journal.pone.0158268. Cilia, C., Panigada, C., Rossini, M., Meroni, M., Busetto, L., Amaducci, S., Boschetti, M., Picchi, V., & Colombo, R. (2014). Nitrogen status assessment for variable rate fertilization in maize through hyperspectral imagery. Remote Sensing, 6(7), 6549-6565. https://doi.org/10.3390/rs6076549. Chen, J., Yang, C., Wu, Sh., Chung, Y., Linton, A., Charles, A. L., & Chen, Ch. (2007). Leaf chlorophyll content and surface spectral reflectance of tree species along a terrain gradient in Taiwan's Kenting National Park. Botanical Studies, 48, 71-77. Evadas, R., Lamb, D. W., Simpfendorfer, S., & Backhouse, D. (2009). Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves. Precision Agriculture, 10, 459-470. https://DOI: 10.1007/s11119-008-9100-2. Diker, K., & Bausch, W. C. (2003). Potential use of nitrogen reflectance index to estimate plant parameters and yield of maize. Biosystems Engineering, 85(4), 437-447. https://doi.org/10.1016/S1537-5110(03)00097-7. Elvanidi, A., Katsoulas, N., Augoustaki, D., Loulou I., & Kittas, C. (2018). Crop reflectance measurements for nitrogen deficiency detection in a soilless tomato crop. Biosystems engineering, 176, 1-11. https://doi.org/10.1016/j.biosystemseng.2018.09.019. Gilliot, J. M., Michelin, J., Hadjard, D., & Houot, S. (2020). An accurate method for predicting spatial variability of maize yield from UAV‑based plant height estimation: a tool for monitoring agronomic field experiments. Precision Agriculture, 22(6), 1-25. https://doi.org/10.1007/s11119-020-09764-w. Guo, J., Zhang, J., Xiong, Sh., Zhang, Zh., Wei, Q., Zhang, W., Feng, W., & Ma, X. (2021). Hyperspectral assessment of leaf nitrogen accumulation for winter wheat using different regression modeling. Precision Agriculture, 22, 1634-1658. https://doi.org/10.1007/s11119-021-09804-z. Habibullah, M., Mohebian, M. R., Soolanayakanahally, R., Bahar, A. N., Vail, S., Wahid, K. A., & Dinh, A. (2020). Low-cost multispectral sensor array for determining leaf nitrogen status. Nitrogen, 1(1), 67-80. https://doi.org/10.3390/nitrogen1010007. Hawkins, J. A., Sawyer, J. E., Barker, D. W., & Lundvall, J. P. (2007). Using relative chlorophyll meter values to determine nitrogen application rates for corn. Agronomy Journal. 99, 1034-1040. https://doi.org/10.2134/agronj2006.0309. Kizilgeci, F., Yildirim, M., Islam, M. S., Ratnasekera, D., Iqbal, M. A., & Sabagh, A. E. (2021). Normalized Difference Vegetation Index and Chlorophyll Content for Precision Nitrogen Management in Durum Wheat Cultivars under Semi-Arid Conditions. Sustainability, 13(7), 3725. https://doi.org/10.3390/su13073725. Krienke, B., Ferguson, R. B., Schlemmer, M., Holland, K., Marx, D., & Eskridge, K. (2017). Using an unmanned aerial vehicle to evaluate nitrogen variability and height effect with an active crop canopy sensor. Precision Agriculture, 18(6), 900-915. https://doi 10.1007/s11119-017-9534-5. Laruffa, J. M., Raun, W. R., Phillips, S. B., Solie, J. B., Stone, M. L., & Johnson, G. V. (2001). Optimum field element size for maximum yields in winter wheat, using variable nitrogen rates. Journal of Plant Nutrition, 24, 313-325. https://doi.org/10.1081/PLN-100001390. Lebourgeois, V., Begue, A., Labbe, S., Houles, M., & Martine, J. F. (2012). A light-weight multi-spectral aerial imaging system for nitrogen crop monitoring. Precision Agriculture, 13, 525-541. https://doi.org/10.1007/s11119-012-9262-9. Li, J., Zhang, F., Qian, X., Zhu, Y., & Shen, G. (2015). Quantification of rice canopy nitrogen balance index with digital imagery from unmanned aerial vehicle. Remote Sensing Letters, 6(3), 183–189. http://dx.doi.org/10.1080/2150704X.2015.1021934. Liang, L., Di, L., Huang, T., Wang, J., Lin, L., Wang, L., & Yang, M. (2018). Estimation of leaf nitrogen content in wheat using new hyperspectral indices and a random forest regression algorithm. Remote Sensing, 10(12), 1940. https:// doi. org/ 10. 3390/ rs101 21940. Lin, F. F., Qiu, L. F., Deng, J. S., Shi, Y. Y., Chen, L. S., & Wang, K. (2010). Investigation of SPAD Meter-Based Indices for Estimating Rice Nitrogen Status. Computers and Electronics in Agriculture, 71, 60-65. https://doi.org/10.1016/j.compag.2009.09.006. Liu, S., Li, L., Gao, W., Zhang, Y., Liu, Y., Wang, S., & Lu, J. (2018). Diagnosis of nitrogen status in winter oilseed rape (Brassica napus L.) using in-situ hyperspectral data and unmanned aerial vehicle (UAV) multispectral images. Computers and Electronics in Agriculture, 151, 185-195. https://doi.org/10.1016/j.compag.2018.05.026. Maresma, A., Ariza, M., Martínez, E., Loveras, J., Martínez-Casasnovas, J. A. (2016). Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sensing, 8, 973. https://doi:10.3390/rs8120973. Mistele, B., & Schmidhalter, U. (2008). Spectral measurements of the total aerial N and biomass dry weight in maize using a quadrilateral-view optic. Field Crops Research, 106(1), 94-103. https://doi.org.10.1016/j.fcr.2007.11.002. Nasielski, J., Earl, H., & Deen, B. (2019). Luxury vegetative nitrogen uptake in maize buffers grain yield under post-silking water and nitrogen stress: a mechanistic understanding. Frontiers in plant science, 10, 318. https://doi.org/10.3389/fpls.2019.00318. Osco, L. P., Junior, J. M., Ramos, A. P. M., Furuya, D. E. G., Santana, D. C., Teodoro, L. P. Gonçalves, W. N.; Baio, F. H. R., Pistori, H., Junior, C. A. d. S., & Teodoro, P. E. (2020). Leaf nitrogen concentration and plant height prediction for maize using UAV-based multispectral imagery and machine learning techniques. Remote Sensing, 12, 3237. https://doi.org/10.3390/rs12193237. Padua, L., Vanko, J., Hruska, J., Adao, T., Sousa, J. J., Peres, E., & Morais, R. (2017). UAS, sensors, and data processing in agroforestry: a review towards practical applications. International Journal of Remote Sensing. http://dx.doi.org/10.1080/01431161.2017.1297548. Rahimi Jahangirlou, M., Akbari, G. A., Alahdadi, I., Soufizadeh, S., Ludemann, C., & Parsons, D. (2022). Phenotypic predictors of dent maize grain quality based on different genetics and management practices Journal of Cereal Science, 103388. https://doi.org/10.1016/j.jcs.2021.103388. Rahimi Jahangirlou, M., Akbari, G. A., Alahdadi, I., Soufizadeh, S., & Parsons, D. (2021). Grain Quality of Maize Cultivars as a Function of Planting Dates, Irrigation and Nitrogen Stress: A Case Study from Semiarid Conditions of Iran. Agriculture, 11(1), 11. https://doi.org/10.3390/agriculture11010011. Rhezali, A., & Lahlali, R. (2017). Nitrogen (N) mineral nutrition and imaging sensors for determining N status and requirements of maize. Journal of Imaging, 3(4), 51. https://doi.org/10.3390/jimaging3040051. Shendryk, Y., Sofonia, J., Garrard, R., Rist, Y., Skocaj, D., & Thorburn, P. (2020). Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging. International Journal of Applied Earth Observation and Geoinformation, 92, 102177. https://doi.org/10.1016/j.jag.2020.102177. Wen, P., Shi, Z., Li, A., Ning, F., Zhang, Y., Wang, R., & Li, J. (2020). Estimation of the vertically integrated leaf nitrogen content in maize using canopy hyperspectral red edge parameters. Precision Agriculture, 22, 984-1005. https://doi.org/10.1007/s11119-020-09769-5. Xu, X., Fan, L., Li, Z., Meng, Y., Feng, H., Yang, H., & Xu, B. (2021). Estimating Leaf Nitrogen Content in Corn Based on Information Fusion of Multiple-Sensor Imagery from UAV. Remote Sensing, 13(3), 340. https://doi.org/10.3390/rs13030340. Yang, M., Hassan, M. A., Xu, K., Zheng, C., Rasheed, A., Zhang, Y., Jin, X., Xia, X., Xiao, Y., & He, Z. (2020). Assessment of water and nitrogen use efficiencies through UAV-based multispectral phenotyping in winter wheat. Frontiers in plant science, 11, 927. https://doi: 10.3389/fpls.2020.00927. Yang, B., Wang, M., Sha, Z., Wang, B., Chen, J., Yao, X., Cheng, T., Cao, W., & Zhu, Y. (2019). Evaluation of Aboveground Nitrogen Content of Winter Wheat Using Digital Imagery of Unmanned Aerial Vehicles. Sensors, 19, 4416. https://doi:10.3390/s19204416. Zarco-Tejada, P. J., Ustin, S. L., & Whiting, M. L. (2005). Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Agronomy Journal, 97, 641-653. https://doi: 10.2134/agronj2003.0257. Zhang, K., Ge, X., Liu, X., Zhang, Z., Liang, Y., Tian, Y., Cao, Q., Zhu, Y., & Liu, X. (2017). Evaluation of the chlorophyll meter and GreenSeeker for the assessment of rice nitrogen status. Advances in Animal Biosciences, 8(2), 359-363. https://doi.org/10.1017/S2040470017000917. Zhu, Y., Zhou, D., Yao, X., Tian, Y., & Cao, W. (2007). Quantitative relationships of leaf nitrogen status to canopy spectral reflectance in rice. Australian Journal of Agricultural Research, 58(11), 1077-1085. https://doi. org/ 10. 1071/ AR064 13. Zillmann, E., Graeff, S., Link, J., Batchelor, W. D., & Claupein, W. (2006). Assessment of Cereal Nitrogen Requirements Derived by Optical On-the-Go Sensors on Heterogeneous Soils. Agronomy Journal, 98(3), 682-690. https://doi.org/10.2134/agronj2005.0253. | ||
آمار تعداد مشاهده مقاله: 348 تعداد دریافت فایل اصل مقاله: 203 |