تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,122,962 |
تعداد دریافت فایل اصل مقاله | 97,231,123 |
مطالعه موردی تغییرات بارش ناشی از عملیات بارورسازی ابر در منطقه شمال غرب ایران با استفاده از مدل میانمقیاس WRF | ||
فیزیک زمین و فضا | ||
مقاله 10، دوره 49، شماره 1، خرداد 1402، صفحه 171-187 اصل مقاله (2.59 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2022.339015.1007406 | ||
نویسندگان | ||
شقایق مرادی1؛ سهیلا جوانمرد* 2؛ سرمد قادر3؛ مجید آزادی4؛ مریم قرایلو5 | ||
1پژوهشگاه هواشناسی و علوم جو، تهران، ایران. رایانامه: moradi41291@gmail.com | ||
2نویسنده مسئول، پژوهشگاه هواشناسی و علوم جو، تهران، ایران. رایانامه: sohailajavanmard2018@gmail.com | ||
3گروه فیزیک فضا، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران. رایانامه: sghader@ut.ac.ir | ||
4پژوهشگاه هواشناسی و علوم جو، تهران، ایران. رایانامه: azadi68@hotmail.com | ||
5گروه فیزیک فضا، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران. رایانامه: gharaylo@ut.ac.ir | ||
چکیده | ||
در این مقاله اثر بارورسازی ابر سرد در یکی از عملیاتهای صورت گرفته توسط مرکز ملی بارورسازی ابرها در منطقه شمال غرب ایران بر بارش منطقه با استفاده از مدل میانمقیاس تحقیقات پیشبینی و وضع هوا (WRF) مورد بررسی قرار گرفته است. بدین منظور روابط فرایند خردفیزیک بارورسازی ابر پارامتره شد، سپس در طرحوارۀ خردفیزیک موریسون موجود در مدل WRF پیادهسازی شد. با شبیهسازی بارورسازی ابر توسط این مدل توسعه یافته، مقدار بارش تولید شده بعد از بارورسازی محاسبه شد و با مقدار بارش تخمین زده شده توسط مدل WRF در حالت کنترلی (بدون بارورسازی ابر) مقایسه شد. ازآنجاکه عمر ابر در زمان تزریق پیروپاترونها و همچنین میزان آب اَبَر سرد ابر در زمان برخورد با پیروپاترونهای مشتعل شده تأثیر بسزایی در اثر بارورسازی ابر دارد و در زمان عملیات، عمر ابر و میزان آب اَبَر سرد ابر در ایستگاههای مختلف متفاوت بوده است، بارورسازی در نقاط مختلف تأثیر متفاوتی داشت. عملیات بارورسازی موجب افزایش بارش باران در ایستگاههای بارانسنجی ارومیه (3%)، اهر (27%)، سراب (7%)، پارسآباد (9%) واقع در منطقه شمال غرب ایران شد و این در حالی است که در برخی ایستگاهها، بارورسازی موجب کاهش بارش 11%، 1%، 4%، 12% و 10% ای به ترتیب برای ایستگاههای مراغه، تبریز، مهاباد، سهند و خوی دو ساعت پس از بارورسازی شد. | ||
کلیدواژهها | ||
بارورسازی ابر؛ بارش؛ مدل میانمقیاس WRF؛ شمال غرب | ||
مراجع | ||
برادران، ر.؛ نیکخواه، م. و مریدی، م. (1393). گزارش ارزیابی پروژههای باروری ابرها در سال آبی 1391- 92 ایران مرکزی. مطالعات طرح پروژه ارزیابی، مرکز ملی تحقیقات و مطالعات باروری ابرها.
مرادی، ش.؛ جوانمرد، س.؛ قادر، س.؛ آزادی، م. و قرایلو، م. (1399). مؤثرترین طرحواره در بهبود عملکرد مدل WRF جهت پیشبینی بارش در منطقه شمال غرب ایران -مطالعه موردی. هواشناسی و علوم جو، 3(3)،188-200.
مجومرد م.؛ زارع م. و پورمحمدی س. (1395). ارزیابی نقش بارورسازی ابرها در افزایش استحصال آب در استان فارس با استفاده فنون سنجش از دور و سامانه اطلاعات جغرافیایی. سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی (کاربرد سنجش از دور و GIS در علوم منابع طبیعی)، 7(2)، 77-85.
Bluestein, H. B. (1992). Synoptic–Dynamic Meteorology in Midlatitudes. Oxford University Press, 431 pp. Breed, D., Rasmussen, R., Weeks, C., Boe, B., & Deshler, T. (2014). Evaluating winter orographic cloud seeding: Design of the Wyoming weather modification pilot project (WWMPP). Journal of Applied Meteorology and Climatology, 53(2), 282–299, doi: 10.1175/JAMC-D-13-0128.1. Chen, B., & Xiao, H. (2010). Silver iodide seeding impact on the microphysics and dynamics of convective clouds in the high plains. Atmos. Res., 96, 186–207, doi: 10.1016/j.atmosres.2009.04.001. Chu, X., Geerts, B., Xue, L., & Pokharel, B. (2017a). A case study of cloud radar observations and large-eddy simulations of a shallow stratiform orographic cloud, and the impact of glaciogenic seeding. J. Appl. Meteor. Climatology, 56, 1285–1304, doi: 10.1175/JAMC-D-16-0364.1. DeMott, P. J., Finnegan, W. G., & Grant, L. O. (1983). An Application of Chemical Kinetic Theory and Methodology to Characterize the Ice Nucleating Properties of Aerosols Used for Weather Modification. Journal of Applied Meteorology and Climatology, 22(7), 1190-1203. https://doi.org/10.1175/1520-0450(1983)022<1190:AAOCKT>2.0.CO;2. Deshler, T., & Reynolds, D. W. (1990). The persistence of seeding effects in a winter orographic cloud seeded with silver iodide burned in acetone. J. Appl. Meteor., 29, 477–488. https://doi.org/10.1175/1520-0450(1990)029<0477:TPOSEI>2.0.CO;2. Geresdi, I., Xue, L., & Rasmussen, R. (2017). Evaluation of Orographic Cloud Seeding Using a Bin Microphysics Scheme: Two-Dimensional Approach. Journal of Applied Meteorology and Climatology, 56(5), 1443-1462. https://journals.ametsoc.org/view/journals/apme/56/5/jamc-d-16-0045.1.xml. Geresdi, I., Xue, L., Sarkadi, N., & Rasmussen, R. (2020). Evaluation of Orographic Cloud Seeding Using a Bin Microphysics Scheme: Three-Dimensional Simulation of Real Cases. Journal of Applied Meteorology and Climatology, 59(9), 1537-1555. doi: 10.1175/JAMC-D-19-0278.1. Guo, X., Zheng, G., & and Jin, D. (2006). A numerical comparison study of cloud seeding by silver iodide and liquid carbon dioxide. Atmos. Res., 79, 183–226. Hobbs, P. V. (1975). The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seed- ing. Part III: Case studies of the effects of seeding. J. Appl. Meteor., 14, 819–858, https://www.jstor.org/stable/26176600. Hobbs, P. V., Lyons, J. H., Locatelli, J. D., Biswas, K. R., Radke, L. F., Weiss Sr, R. R., & Rangno, A. L. (1981). Radar detection of cloud-seeding effects. Science, 213, 1250–1252, doi: 10.1126/science.213.4513.1250. Javanmard, S., & Pirhayati, M. K. (2012). AgI cloud seeding modeling for hail suppression of cold clouds. Journal of Geography and Geology, 4(2), 81. https://doi.org/10.5539/jgg.v4n2 Seto, J., Tomine, K., Wakimizu, K., & Nishiyama, K. (2011). Artificial cloud seeding using liquid carbon dioxide: comparisons of experimental data and numerical analyses. J. Appl. Meteor. Climatol., 50, 1417-1431, https://www.jstor.org/stable/26174102. Changnon Jr, S. A., Farhar, B. C., & Swanson, E. R. (1978). Hail Suppression and Society: Assessment of future hail suppression technology reveals its development should be sizable or ignored. Science, 200(4340), 387-394. Marcolli, C., Nagare, B., Welti, A., & Lohmann, U. (2016). Ice nucleation efficiency of AgI: review and new insights, Atmos. Chem. Phys., 16, 8915–8937, https://doi.org/10.5194/acp-16-8915-2016. Meyers, M. P., Demott, P. J., & Cotton, W. R. (1995). A comparison of seeded and nonseeded orographic cloud simulations with an explicit cloud model. J. Appl. Meteor., 34, 834–846. https://www.jstor.org/stable/26187222. Morrison, H., Curry, J. A., & Khvorostyanov, V. I. (2005). A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description. Journal of the Atmospheric Sciences, 62(6), 1665-1677, doi: 10.1175/JAS3446.1. Pokharel, B., & Geerts, B. (2016). A multi-sensor study of the impact of ground-based glaciogenic seeding on clouds and precipitation over mountains in Wyoming. Part I: Project description. Atmos. Res., 182, 269–281, doi: 10.1016/ j.atmosres.2016.08.008. Pokharel, B., Geerts, B., & Jing, X. (2018). The impact of ground-based glaciogenic seeding on a shallow stratiform cloud over the Sierra Madre in Wyoming: A multi-sensor study of the 3 March 2012 case. Atmos. Res., 214, 74–90, doi: 10.1016/j.atmosres.2018.07.013. Pokharel, B., Geerts, B., Jing, X., Friedrich, K., Ikeda, K., & Rasmussen, R. (2017). A multi-sensor study of the impact of ground-based glaciogenic seeding on clouds and precipitation over mountains in Wyoming. Part II: Seeding impact analysis. Atmos. Res., 183, 42–57, doi: 10.1016/j.atmosres.2016.08.018. Pruppacher, H. R., & Klett, J. D. (2010). Microphysics of Clouds and Precipitation. Springer, 852 pp. Rauber, R. M., Geerts, B., Xue, L., French, J., Friedrich, K., Rasmussen, R. M., Tessendorf, S. A., Blestrud, D. R., Kunkel, M. L., & Parkinson, S. (2019). Wintertime Orographic Cloud Seeding—A Review. Journal of Applied Meteorology and Climatology, 58(10), 2117-2140. Retrieved Dec 18, 2021, doi: 10.1175/JAMC-D-18-0341.1. Wu, X., Yan, N., Yu, H., Niu, S., Meng, F., Liu, W., & Sun, H. (2018). Advances in the evaluation of cloud seeding: Statistical evidence for the enhancement of precipitation. Earth and Space Science, 5, 425–439. doi: 10.1029/2018EA000424. Xue, L., Teller, A., Rasmussen, R. M., Geresdi, I., & Liu, X. (2012). Effects of aerosol solubility and regeneration on mixed-phase orographic clouds and precipitation. J. Atmos. Sci., 69, 1994–2010. doi:10.1175/ JAS-D-11-098.1. Xue, L., Tessendorf, S., Nelson, E., Rasmussen, R., Breed, D., Parkinson, S., Holbrook, P., & Blestrud, D. (2013a). Implementation of a silver iodide cloud-seeding parameterization in WRF. Part II: 3D real case simulations and sensitivity tests. J. Appl. Meteor. Climatology, 52, 1458–1476. doi:10.1175/ JAMC-D-12-0149.1. Xue, L., Tessendorf, S., Nelson, E., Rasmussen, R., Breed, D., Parkinson, S., Holbrook, P., & Blestrud, D. (2013b). Implementation of a silver iodide cloud-seeding parameterization in WRF. Part I: Model description and idealized 2D sensitivity tests. J. Appl. Meteor. Climatology, 52, 1433–1457, doi:10.1175/JAMC-D-12-0148.1. Xue, L., Tessendorf, S., Nelson, E., Rasmussen, R., Breed, D., Parkinson, S., Holbrook, P., & Blestrud, D. (2013c). AgI cloud seeding effects as seen in WRF simulations. Part I: Model description and idealized 2D sensitivity tests. J. Appl. Meteor. Climatology, 52, 1433–1457, doi:10.1175/JAMC-D-12-0148.1. Xue, L., Tessendorf, S., Nelson, E., Rasmussen, R., Breed, D., Parkinson, S., Holbrook, P., & Blestrud, D. (2013d). AgI cloud seeding effects as seen in WRF simulations. Part II: 3D real case simulations and sensitivity tests. J. Appl. Meteor. Climatology, 52, 1458–1476, doi: 10.1175/JAMC-D-12-0149.1. Xue, L., Tessendorf, S., & Geerts, B., (2016a). A Case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part II: AgI dispersion and seeding signals simulated by WRF. J. Appl. Meteor. Climatology, 55, 445-464, doi: 10.1175/JAMC-D-15-0115.1. Xue, L., Chu, X., Rasmussen, R., Breed, D., & Geerts, B. (2016b). A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part II: AgI dispersion and seeding signals simulated by WRF. J. Appl. Meteor. Climatology, 55, 445–464, doi:10.1175/JAMC-D-15-0115.1. Xue, L., Edwards, R., Huggins, A., Lou, X., Rasmussen, R., Tessendorf, S., Holbrook, P., Blestrud, D., Kunkel, M., Glenn, B., & Parkinson, S. (2017). WRF large-eddy simulations of chemical tracer deposition and seeding effect over complex terrain from ground- and aircraft-based AgI genera- tors. Atmos. Res., 190, 89–103. doi: 10.1016/ j.atmosres.2017.02.013. Yin, Y., Levin, Z., Reisin, T. G., & Tzivion, S., (2000). Seeding convective clouds with hygroscopic flares: Numerical simulations using a cloud model with detailed microphysics. J. Appl. Meteor., 39, 1460–1472, https://www.jstor.org/stable/26184345. | ||
آمار تعداد مشاهده مقاله: 893 تعداد دریافت فایل اصل مقاله: 605 |