- Aguilar, I., Misztal, I., & Tsuruta, S. (2010). Genetic trends of milk yield under heat stress for US Holsteins. Journal of Dairy Science, 93, 1754-1758.
- Bermann, M., Legarra, A., Hollifield, M.K., Masuda, Y., Lourenco, D., & Misztal, I. (2021). Validation of single-step GBLUP genomic predictions from threshold models using the linear regression method: An application in chicken mortality. Journal of Animal Breeding and Genetics, 138(1), 4-13.
- Chen, C. Y., Misztal, I., Aguilar, I., Tsuruta, S., Meuwissen, T. H. E., Aggrey, S. E., ... & Muir, W. M. (2011) Genome-wide marker-assisted selection combining all pedigree phenotypic information with genotypic data in one step: An example using broiler chickens. Journal of Animal Science, 89, 23-28.
- Christensen, O.F., & Lund, M.S. (2010). Genomic prediction when some animals are not genotyped. Genetics Selection Evolution, 42, 2.
- Clark, S.A., Hickey, J.M., Daetwyler, H.D., & van der Werf, J.H. (2012). The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genetics Selection Evolution, 44, 4.
- Daetwyler, H. D., Kemper, K. E., Van Der Werf, J. H. J., & Hayes, B. J. (2012) Components of the accuracy of genomic prediction in a multi-breed sheep population. Journal of Animal Science 90: 3375-3384.
- Fernando, R.L., Dekkers, J.C., & Garrick, D.J. (2014). A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses. Genetics Selection Evolution, 46, 50.
- González-Recio, O., & Forni, S. (2011). Genome-wide prediction of discrete traits using Bayesian regressions and machine learning. Genetics Selection Evolution, 43, 7.
- Habier, D., Fernando, R., & Dekkers, J. (2007). The impact of genetic relationship information on genome-assisted breeding values. Genetics, 1 (77), 2389-2397.
- Habier, D., Tetens, J., Seefried, F-R., Lichtner, P., & Thaller, G. (2010). The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genetics Selection Evolution, 42 5.
- Hayes, B.J., Visscher, P.M., & Goddard, M.E. (2009). Increased accuracy of artificial selection by using the realized relationship matrix. Genetics Research, 91, 47-60.
- Kang, H., Zhou, L., Mrode, R., Zhang, Q., & Liu, J. (2017). Incorporating the single-step strategy into a random regression model to enhance genomic prediction of longitudinal traits. Heredity, 119, 459.
- Kappes, S.M., Keele, J.W., Stone, R.T., McGraw, R.A., Sonstegard, T.S., Smith, T., Lopez-Corrales, N.L., & Beattie, C.W. (1997). A second-generation linkage map of the bovine genome. Genome Research, 7, 235-249.
- Lee, J., Cheng, H., Garrick, D., Golden, B., Dekkers, J., Park, K., Lee, D., & Fernando, R. (2017). Comparison of alternative approaches to single-trait genomic prediction using genotyped and non-genotyped Hanwoo beef cattle. Genetics Selection Evolution, 49, 2.
- Legarra, A., Aguilar, I., & Misztal, I. (2009). A relationship matrix including full pedigree and genomic information. Journal of Dairy Science, 92, 4656-4663.
- Liu, Z., Goddard, M., Reinhardt, F., & Reents, R. (2014). A single-step genomic model with direct estimation of marker effects. Journal of Dairy Science, 97, 5833-5850.
- Lourenco, D., Tsuruta, S., Fragomeni, B., Masuda, Y., Aguilar, I., Legarra, A., Bertrand, J., Amen, T., Wang, L., & Moser, D. (2015). Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus. Journal of Animal Science, 93, 2653-2662.
- Madsen, P., & Jensen, J. (2010). A Users Guide to DMU. A Package for Analysing Multivariate Mixed Models, Version 6.
- Meuwissen, T., Hayes, B., & Goddard, M. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157, 1819-1829.
- Naderi, Y., & Sadeghi, S. (2019). Assessment of the genomic prediction accuracy of discrete traits with imputation of missing genotypes. Animal Science Papers and Reports, 37, 149-168.
- Sadeghi, S., Rafat, S.A., & Alijani, S. (2018). Evaluation of imputed genomic data in discrete traits using random forest and Bayesian threshold methods. Acta Scientiarum Animal Sciences, 40, e39007.
- Sargolzaei, M., & Schenkel, F.S. (2009). QMSim: a large-scale genome simulator for livestock. Bioinformatics, 2 (5), 680-681
- Solberg, T., Sonesson, A., & Woolliams, J. (2008). Genomic selection using different marker types and densities. Journal of Animal Science, 86, 2447-2454.
- Su, G., & Madsen, P. (2013). User’s Guide for GMATRIX version 2, a Program for Computing Genomic Relationship Matrix.
- VanRaden, P.M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91, 4414-4423.
- VanRaden, P.M., & Sullivan, P.G. (2010). International genomic evaluation methods for dairy cattle. Genetics Selection Evolution, 42, 7.
- Yin, T., Pimentel, E., Borstel, U.Kv., & König, S. (2014). Strategy for the simulation and analysis of longitudinal phenotypic and genomic data in the context of a temperature× humidity-dependent covariate. Journal of Dairy Science, 97, 2444-2454.
- Zhang, X., Lourenco, D., Aguilar, I., Legarra, A., & Misztal, (2016). Weighting strategies for single-step genomic BLUP: an iterative approach for accurate calculation of GEBV and GWAS. Frontiers in Genetics, 7, 151.
- Zhou, L., Mrode, R., Zhang, S., Zhang, Q., Li, B., & Liu, J-F. (2018). Factors affecting GEBV accuracy with single-step Bayesian models. Heredity, 120, 100.
|