- Ali, N. M. S., Güven, A., & Al-Juboori, A. M. (2018). Statistical Downscaling of Precipitation and Temperature Using Gene Expression Programming. Journal of Advanced Physics, 7(4), 518-521.
- Alizadeh Jabehdar, A., Asadi E., & Ghorbani, M. A. (2021). Selection of the most appropriate GCM models of IPCC's fourth, fifth and sixth assessment reports (Case Study: Ardabil synoptic station). Second International Conference and Fifth National Conference on Natural Resources and Environment.
- Alizadeh Jabehdar, A. (2021). Simulation of the inlet runoff to Yamchi Dam in Ardabil under the influence of climate change scenarios. Master dissertation, Tabriz University, Iran.
- Almazroui, M., Saeed, F., Saeed, S., Islam, M.N., Ismail, M., Klutse, N.A.B., & Siddiqui, M.H. (2020). Projected change in temperature and precipitation over Africa from Earth Systems and Environment, 4(3), 455-475.
- Anh, Q. T., & Taniguchi, K. (2018). Coupling dynamical and statistical downscaling for high-resolution rainfall forecasting: Case study of the Red River Delta, Vietnam. Progress in Earth and Planetary Science, 5(1), 1-18.
- Ansari, S., Dehban, H., Zareian, M., & Farokhnia, A. (2022). Investigation of temperature and precipitation changes in the Iran's basins in the next 20 years based on the output of CMIP6 model. Iranian Water Researches Journal, 16(1), 11-24. (In Persion).
- Asakereh, H., & Gholami, A. (2021). 'Simulating maximum temperature recorded in Qazvin Synoptic Station Using Statistical Downscaling of CanESM2 Output', Scientific- Research Quarterly of Geographical Data (SEPEHR), 30(118), 25-41. (In Persion).
- Aryal, A., Shrestha, S., & Babel, M.S. (2019). Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections. Theoretical and Applied Climatology, 135(1/2), 193-209.
- Bates, B., Kundzewicz, Z., & Wu, S. (2008). Climate change and water Intergovernmental Panel on Climate Change Secretariat.
- Bhattacharya, B., & Solomatine, D. P. (2006). Machine learning in sedimentation Neural Networks, 19(2), 208-214.
- Bowden, G. J., Dandy, G. C., & Maier, H. R. (2005). Input determination for neural network models in water resources applications. Part 1-background and methodology. Journal of Hydrology, 301(1-4), 75-92.
- Chen, C., Kalra, A., & Ahmad, S. (2019). Hydrologic responses to climate change using downscaled GCM data on a watershed scale. Journal of Water and Climate Change, 10(1), 63-77.
- Campozano, L., Tenelanda, D., Sanchez, E., Samaniego, E., & Feyen, J. (2016). Comparison of Statistical Downscaling Methods for Monthly Total Precipitation: Case Study for the Paute River Basin in Southern Ecuador. Advances in Meteorology, 13pp.
- Danandeh Mehr, A., Sorman, A. U., Kahya, E., & Hesami Afshar, M. (2020). Climate change impacts on meteorological drought using SPI and SPEI: case study of Ankara, Turkey. Hydrological Sciences Journal, 65(2), 254-268.
- Dibike, B.Y., & Coulibaly, P. (2006). Temporal neural networks for downscaling climate variability and extremes. Neural Networks, 19, 135-144.
- Fischer, G., Tubiello, F. N., Van Velthuizen, H., & Wiberg, D. A. (2007). Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technological Forecasting and Social Change, 74(7), 1083-1107.
- Fowler, H. J., Blenkinsop, S., & Tebaldi, C. (2007). Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. International Journal of Climatology: A Journal of the Royal Meteorological Society, 27(12), 1547-1578.
- García-García, A., Cuesta-Valero, F. J., Beltrami, H., & Smerdon, J. E. (2019). Characterization of air and ground temperature relationships within the CMIP5 historical and future climate simulations: Journal of Geophysical Research: Atmospheres, 124(7), 3903-3929.
- Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., & Takahashi, K. (2019). Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized emissions trajectories through the end of the century. Geoscientific Modeldevelopment, 12(4), 1443-1475.
- Ghorbani, M. A., Deo, R. C., Karimi, V., Yaseen, Z. M., & Terzi, O. (2018). Implementation of a hybrid MLP-FFA model for water level prediction of Lake Egirdir, Turkey. Stochastic Environmental Research and Risk Assessment, 32(6), 1683-1697.
- Haykin, S. (1996). Neural networks expand SP's horizons. IEEE Signal Processing Magazine, 13(2), 24-49.
- Jato-Espino, D., Sillanpää, N., Charlesworth, S. M., & Rodriguez-Hernandez, J. (2019). A simulation-optimization methodology to model urban catchments under non-stationary extreme rainfall events. Environmental Modelling & Software, 122, 103960.
- Kasiri, M., Goodarzi, M., Jnbaz Ghobadi, G. R., Motavali, S. (2020). FutureProjection of temperature and precipitation changes in the southern coast of Caspian sea. Physical Geography Quarterly, 13(47), 2020, 35-51.
- Kim, J. H., Sung, J. H., Chung, E. S., Kim, S. U., Son, M., & Shiru, M. S. (2021). Comparison of projection in meteorological and hydrological droughts in the Cheongmicheon Watershed for RCP4. 5 and SSP2-4.5. Sustainability, 13(4), 2066.
- Kisi, Ö. (2004). Multi-layer perceptrons with Levenberg-Marquardt training algorithm for suspended sediment concentration prediction and estimation/Prévision et estimation de la concentration en matières en suspension avec des perceptrons multi-couches et l’algorithme 156 d’apprentissage de Levenberg-Marquardt. Hydrological Sciences Journal, 49(6).
- Laddimath, R. S., & Patil, N. S. (2019). Artificial neural network technique for statistical downscaling of global climate model. MAPAN-Journal of Metrology Society of India, Springer, 34(1), 121-127.
- Mahdizadeh, S., Meftah halghi, M., Seyyed Ghasemi, S., & Mosaedi, A. (2011). Study of precipitation variation due to climate change (Case study: Golestan dam basin). Journal of Water and Soil Conservation, 18(3), 117-132. (In Persion)
- Montenegro-Murillo, D. D., Pérez-Ortiz, M. A., & Vargas-Franco, V. (2019). Using Artificial Neural Networks to predict monthly precipitation for the Cali river basin, Colombia. Dyna, 86(211), 122-130.
- Nengker, T., Choudhary, A., & Dimri, P. (2018). Assessment of the performance of CORDEX-SA experiments in simulating seasonal mean temperature over the Himalayan region for the present climate: part I: Climate Dynamics, 50, 2411-2441.
- Nie, S., Fu, S., Cao, W., & Jia, X. (2020). Comparison of monthly air and land surface temperature extremes simulated using CMIP5 and CMIP6 versions of the Beijing Climate Center climate model: Theoretical and Applied Climatology, 1-16.
- Nourani, V., Rouzegari, N., Molajou, A., & Baghanam, A. H. (2020). An integrated simulation-optimization framework to optimize the reservoir operation adapted to climate change scenarios. Journal of Hydrology, 587, 125018.
- Nourani, V., Razzaghzadeh, Z., Baghanam, A. H., & Molajou, A. (2019). ANNbased statistical downscaling of climatic parameters using decision tree predictor screening method. Theoretical and Applied Climatology, 137(3), 1729-1746
- Olsson, T., Kämäräinen, M., Santos, D., Seitola, T., Tuomenvirta, H., Haavisto, R., & Lavado-Casimiro, W. (2017). Downscaling climate projections for the Peruvian coastal Chancay-Huaral Basin to support river discharge modeling with WEAP. Journal of Hydrology: Regional Studies, 13, 26-42.
- Omidvar, E., Rezaei, M., & Pirnia, A. (2019). Performance Evaluation of Artificial Neural Network Models for Downscaling and Predicting of Climate Variables . Journal of Watershed Management Research, 9 (18), 80-90. (In Persion)
- O'Neill, B. C., Tebaldi, C., Vuuren, D. P. V., Eyring, V., Friedlingstein, P., Hurtt,, & Sanderson, B. M. (2016). The scenario model intercomparison project(ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461-3482.
- O’Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, S., & Solecki, W. (2017). The roads ahead: Narratives for sharedsocioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42, 169-180.
- Pal, M., Singh, N. K., & Tiwari, N. K. (2012). M5 model tree for pier scour prediction using field dataset. KSCE Journal of Civil Engineering, 16(6), 1079-1084.
- Pearson, C. J., Bucknell, D., & Laughlin, G. P. (2008). Modelling crop productivity and variability for policy and impacts of climate change in eastern Canada. Environmental Modelling & Software, 23(12), 1345-1355.
- Quinlan, J. R. (1992). Learning with continuous classes. In 5th Australian joint conference on artificial intelligence, Vol. 92, 343-348.
- Rahimi, R., & Rahimi, M. (2018). 'Spatial and Temporal Analysis of Climate Change in the Future and Comparison of SDSM, LARS-WG and Artificial Neural Network Downscaling Methods (Case Study: Khuzestan Province)', Iranian journal of Ecohydrology, 5(4), 1161-1174. (In Persion)
- Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D.,&Tavoni, M. (2018). Scenarios towards limiting global mean temperatureincrease below 1.5 C. Nature Climate Change, 8(4), 325-332.
- Sarzaeim, P., Bozorg-Haddad, O., Bozorgi, A., & Loáiciga, H. A. (2017). Runoff projection under climate change conditions with data-mining methods. Journal of Irrigation and Drainage Engineering, 143(8), 04017026.
- Sharafti, A., & Khazaei, M. (2017). Exploration of Randomness Characteristic of Rainfall Pattern Using RDP Model in Symareh Catchment., Journal of Environmental Science and Technology, 19(1), 1-14. (In Persion)
- Tabari, H., Shadmani, M., Sabziparvar, A., & Marofi, S. (2008). Comparison of empirical methods, nonlinear regression and artificial neural network in estimating daily evaporation from class A evaporation pan in a dry region.3rd Iran Water Resources Management Conference, Tabriz . (In Persion)
- Kawagoe, S., & Sarukkalige, R. (2019). Estimation of probable maximum precipitation at three provinces in Northeast Vietnam using historical data and future climate change scenarios. Journal of Hydrology: Regional Studies, 23, 100599.
- Teegavarapu, R. S., & Goly, A. (2018). Optimal selection of predictor variables in statistical downscaling models of precipitation. Water Resources Management, 32(6), 1969-1992.
- Tripathi, S., Srinivas, V., & Nanjundiah, R.S. (2006). Downscaling of precipitation forclimate change scenarios: A support vector machine approach. Journal of Hydrology, Pp: 621-640.
- Valipour, E., Ghorbani, M., & Asadi, E. (2019). Evaluation and Optimization of Rain Gauge Network Based on the Geostatistic Methods and Firefly Algorithm. (Case study: Eastern Basin of Urmia Lake). Irrigation Sciences and Engineering, 42(4), 153-166
- Wilby, R. L., Dawson, C.W., & Barrow, E.M. (2002). SDSM- A Decision Suport Tool for the Assessment of Regional Climate Change Impacts. Journal of Environmental Modeling and Software, 17, 147-159
- Xu, C. Y. (1999). From GCMs to river flow: a review of downscaling methods and hydrologic modelling approaches. Progress in physical Geography, 23(2), 229- 249.
- Witten, I. H., & Frank, E. (2006). Data mining: Practical machine learning tools and techniques 2nd edition.
- Yang, X. S. (2010). Firefly algorithm, stochastic test functions and design optimisation. International Journal of Bio-Inspired Computation, 2(2), 78-84.
- Yousefi, H., Pirbazari, S., Moridi, A., Khajehpour, H., Karbasi, H., & Fathi, T. (2021). 'Investigating Temperature Variation due to Climate Change in Iran', Water and Irrigation Management, 11(2), 237-248 .(In Persion)
- Zamani, R., Ali, A. M. A., & Roozbahani, A. (2020). Evaluation of adaptation scenarios for climate change impacts on agricultural water allocation using Fuzzy MCDM Methods. Water Resources Management, 34(3), 1093-1110.
- Zarrin, A., & Dadashi-Roudbari, A. (2022). Evaluation of CMIP6 models in estimating the temperature in Iran with emphasis on Equilibrium Climate Sensitivity (ECS) and Transient Climate Response (TCR). Iranian Journal of Geophysics. (In Persion)
- Zhu, X., Dong, W., Wei, Z., Guo, Y.,Gao, X., Wen, X., & Chen, J. (2018). Multi-decadal evolution characteristicsof global surface temperature anomalydata shown by observation and CMIP5models: International Journal of Climatology, 38, 1533-1542.
|