- Adeeb, E., Haider, B. A., & Sohn, C. H. (2018). Flow interference of two side-by-side square cylinders using IB-LBM Effect of corner radius. Results in Physics 10, 256-263.
- Ali, K. H., & Karim, O. (2002). Simulation of flow around piers. Hydraul. Res., 40, 161-174.
- Anjum, N., & Tanaka, N. (2019). Study on the flow structure around discontinued vertically layered vegetation in an open channel. of Hydrodynamics. https://doi.org/10.1007/s42241-019-0040-2
- Bai, H., & Li, J. W. (2011). Numerical Simulation of Flow Over a Circular Cylinder at Low Reynolds Number. Advanced Material Res, 255-260: 942.
- Breuer, M., Bernsdorf, J., Zeiser, T., & Durst, F. (2000). Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume. International Journal of Heat and Fluid Flow, 21, 186-196.
- Butt, U., & Egbers, C. (2013). Aerodynamic Characteristics of Flow Over Circular Cylinders with Patterned Surface. International Journal of Materials, Mechanics and Manufacturing, 1(2), 121.
- Cao, S., & Tamura, Y. (2008). Flow Around a Circular Cylinder in Linear Shear Flows at Subcritical Reynolds Number. of Wind Engineering and Industrial Aerodynamics, 96,10-11: 1961.
- Cao, Y., Tamura, T., & Kawai, H. (2020). Spanwise resolution requirements for the simulation of high-Reynolds-number flows past a square cylinder. Computers and Fluids, 196, 104320. https://doi.org/10.1016/j.compfluid.2019.104320
- Curran, J. C., & Hession, W. C. (2013). Vegetative impacts on hydraulics and sediment processes across the fluvial system, of Hydrology, 505, 364-376.
- Den Hartog, J. P. (2013). Mechanical Vibrations. Dover Publications. ISBN: 0486131858.
- Diwivedi, A. R., Dhiman, A., & Sanyal, A. (2022). Stratified Shear-Thinning Fluid Flow Past Tandem Cylinders in the Presence of Mixed Convection Heat Transfer With a Channel-Confined Configuration. Fluids Eng., 144(5), 051301. https://doi.org/10.1115/1.4052473
- Dupuis, V., Proust, S., Berni, C., & Paquier, A. (2016). Combined effects of bed friction and emergent cylinder drag in open channel flow. Environmental Fluid Mechanics. doi: 10.1007/s10652-016-9471-2
- Durao, D. F. G., Gouveia, P. S. T., & Pereira, J. C. F. (1991). Velocity characteristics of the flow around a square cross section cylinder placed near a channel wall. Experiments in Fluids, 11, 341-350.
- Etminan, A., Moosavi, M., & Ghaedsharifi (2011). Determination of flow configuration and fluid forces acting on two tandem square cylinders in cross-flow and its wake patterns. International Journal of Mechanics, 5(2).
- Gamet, L., Scala, M., Roenby, J., Scheufler, H., & Pierson, J. L. (2020). Validation of volume-of-fluid OpenFOAM® isoAdvector solvers using single bubble benchmarks. Computers & Fluids, 213. https://doi.org/10.1016/j.compfluid.2020.104722
- Gao, Y., Chen, W., Wang, B., & Wang, L. (2019). Numerical simulation of the flow past six‐circular cylinders in rectangular configurations. Journal of Marine Science and Technology. https://doi.org/10.1007/s00773-019-00676-7
- Gera, B., Sharma, P. K., & Singh, R. K. (2010). CFD Analysis of 2D Unsteady Flow Around a Square Cylinder. International J. of Applied Engineering Research, 1(3), 602.
- Ghisalberti, M., & Nepf, H. M. (2002). Mixing layers and coherent structures in vegetated aquatic flows, Geophys. Re, 107 (C2) 1-11.
- Greenshields, C. J. (2019). OpenFOAM User Guide version 7, OpenFOAM Foundation Ltd, CFD Direct Ltd. https://openfoam.org
- Haddadi, B., Jordan, C., & Harasek, M. (2018). OpenFOAM® Basic Training, 4th edition. Institute of Chemical, Environmental & Bioscience Engineering, Technische Universität Wien.
- Issa, R. I. (1985). Solution of the implicitly discretized fluid flow equations by operator-splitting. Comput Phys, 62, 40-65.
- Kanaris, N., Grigoriadis, D., & Kassinos, S. (2011). Three dimensional flow around a circular cylinder confined in a plane channel. Physics of fluids, 23, 064106. doi:10.1063/1.3599703
- Kang, H. (2013). Flow Characteristics and Morphological Changes in Open-Channel Flows with Alternate Vegetation Zones. KSCE J. of Civil Engineering, 17(5), 1157-1165.
- Kharlamov, A. A. (2012). Modeling of transverse self-oscillations of a circular cylinder in an incompressible fluid flow in a plane channel with circulation. of Applied Mechanics and Technical Physics, 53(1), 38-42.
- Kozlov, I. M., Dobergo, K. V., & Gnesdilov, N. (2011). Application of RES Methods for Computation of Hydrodynamic Flows by an Example of 2D Flow Past a Circular Cylinder for Re = 5–200. International J. of Heat and Mass Transfer, 54(4), 887. http://dx.doi.org/10.1016/j.ijheatmasstransfer
- Kumar, A., & Ray, R. K. (2018). Numerical Simulation of Flow Around Square Cylinder with an Inlet Shear in a Closed Channel. Applications of Fluid Dynamics, Proceedings ICAFD 2016, 297-304. https://doi.org/10.1007/978-981-10-5329-0_21
- Lam, K., Li, J. Y., Chan, K. T., & So, R. M. C. (2003). Flow pattern and velocity field distribution of cross-flow around four cylinders in a square configuration at a low Reynolds number. Journal of Fluids and Structures, 17, 665-679.
- Lopez, F., & Garcia, M. (2001). Mean flow and turbulence structure of open channel flow through non-emergent vegetation, ASCE J. Hydraul. Eng., 127 (5), 392-402.
- Lysenko, D. A., Ertesvag, I. S., & Rian, K. E. (2012). Large-eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox. Flow Turbulence Combust, 89(4), 491-518.
- Montelpare, D. V. S., & Ricci, R. (2016). Detached–eddy simulations of the flow over a cylinder at Re = 3900 using OpenFOAM. Comput Fluids, 136(10), 152-169.
- Nakagawa, S., Nitta, K., & Senda, M. (1999). An experimental study on unsteady turbulent near wake of a rectangular cylinder in channel flow. Experiments in Fluids, 27, 284-294.
- Norberg, C. (2001). Flow around a circular cylinder: Aspects of fluctuating lift. Fluids Struct, 15 (3-4): 459–69.
- Ong, M. C., Utnes, T., Holmedal, L. E., Myrhaug, D., & Pettersen, B. (2009). Numerical Simulation of Flow Around a Smooth Circular Cylinder at Very High Reynolds Numbers. Marine Structures, 22, 142. http://dx.doi.org/10.1016/j.marstruc
- Park, J., Kwon, K., & Choi, H. (1998). Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160. KSME International J., 12(6), 1200-1205.
- Patankar, S. V. (1980). Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., Fluid dynamics, Taylor & Francis, ISBN: 978-0-89116-522-4.
- Perumal, D. A., Kumar, G. V. S., & Dass, A. K. (2012). Numerical Simulation of Viscous Flow over a Square Cylinder Using Lattice Boltzmann Method. International Scholarly Research Network ISRN Mathematical Physics, 2012, Article ID 630801, doi:10.5402/2012/630801
- Rajani, B. N., Gowda, R. V. P., & Ranjan, P. (2013). Numerical Simulation of Flow past a Circular Cylinder with Varying Tunnel Height to Cylinder Diameter at Re 40. International J. of Computational Engineering Research (ijceronline.com), 3(1), 188-194.
- Rajani, B. N., Kandasamy, A., & Majumdar, S. (2009). Numerical Simulation of Laminar Flow Past a Circular Cylinder. Applied Mathematics Modeling, 33(3), 1228-1247.
- Reichi, P., Hourigan, K., & Thompson, M. C. (2005). Flow past a cylinder close to a free surface. Fluid Mech., 533, 269-296.
- Richardson, E. V., & Panchang, G. V. (1998). Three-dimensional simulation of scour-inducing flow at bridge piers. Hydraul. Eng., 124(5), 530-540.
- Samet, K., Hoseini, K., Karami, H., & Mohammadi, M. (2019). Comparison Between Soft Computing Methods for Prediction of Sediment Load in Rivers: Maku Dam Case Study. J. Sci. Technol., Trans. Civ. Eng., 43, 93-103.
- Sarwar Abbasi, W., Islam, S. U., Faiz, L., & Rahman, H. (2018). Numerical investigation of transitions in flow states and variation in aerodynamic forces for flow around square cylinders arranged inline. Chinese Journal of Aeronautics, 31(11), 2111-2123.
- Sohankar, A., Norberg, C., & Davidson, L. (1998). Low-Reynolds-number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition. International Journal for Numerical Methods in Fluids, 26, 39-56.
- Sumer, B. M., & Fredsøe, J. (1997). Hydrodynamics Around Cylindrical Structures. Advanced Series on Ocean Engineering, Volume 12. World Scientific, Singapore.
- Vojoudi Mehrabani, F., Mohammadi, M., Ayyoubzadeh, S. A., Fernandes, João N., & Ferreira, Rui M. L. (2020a). Turbulent Flow Structure in a Vegetated Non-Prismatic Compound Channel, Proceedings, Journal of River Research and Applications, Wiley, 36, 1868-1878.
- Vojoudi Mehrabani, F., Mohammadi, M., & Ayyoubzadeh, S. A. (2020b). Flow Behavior in Non-Prismatic Convergent Compound Channel with Submerged Vegetation on Floodplains, Proceedings, Iranian Journal of Hydraulics, IHA, 15(1). (In Persian)
- Wang, D., Liu, Y., Li, H., & Xu, H. (2021). Secondary instability of channel-confined transition around dual-circular cylinders in tandem. International Journal of Mechanical Sciences 208, 106692, https://doi.org/10.1016/j.ijmecsci.2021.106692
- Wang, Y., Wang, L., J, Y., Zhang, J., Xu, M., Xiong, X., & Wang, C. (2022). Research on the force mechanism of two tandem cylinders in a stratified strong shear environment. Fluids, 34, 053308. doi:10.1063/5.0089408
- Wu, Y. J., Jing, H. F., Li, C. G., & Song, Y. T. (2020). Flow characteristics in open channels with aquatic rigid vegetation. Journal of Hydrodynamics, 32(6), 1100-1108.
- Zhang, C. W. L, & Y. M. Shen, (2010). A 3D non-linear k-ε turbulent model for prediction of flow and mass transport in channel with vegetation, Math. Modell, 34, 1021-1031.
|