تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,308 |
تعداد دریافت فایل اصل مقاله | 97,231,347 |
Kinetic and Thermodynamic Parameters of Cadmium Ion Removal by using the Orange Wood-Synthesized Activated Carbon Nanoparticles Modified with Cysteine | ||
Pollution | ||
دوره 8، شماره 4، مهر 2022، صفحه 1216-1232 اصل مقاله (915.79 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2022.341137.1429 | ||
نویسندگان | ||
Elham Rostami؛ Nadia Esfandiari* ؛ Bizhan Honarvar؛ Moein Nabipour؛ Zahra Arab Aboosadi | ||
Department of Chemical Engineering, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran. | ||
چکیده | ||
Activated carbon is known an as appropriate adsorbent due to its high adsorption capacity for most pollutants, especially heavy metals. In the present study, activated carbon was synthesized from orange wood by employing the chemical activation method. Additionally, cysteine amino acid was used to modify the activated carbon surface, leading to an enhancement in adsorption ability because of having a nitrogen group. Based on the results, the adsorption capacity of the modified activated carbon was obtained at 120 mg g-1 adsorbent. The parameters affecting adsorption such as the amount of used adsorbent, as well as solution pH, primary concentration, and contact time were optimized, followed by performing the adsorption process under optimal conditions. The optimal adsorption conditions included the pH of 6, contact time of 60 min, adsorbent amount of 50 mg, and primary cadmium concentration of 80 ppm. Further, kinetic and thermodynamic parameters were assessed and optimized. The results of which represented the best fit between adsorption with Langmuir isotherm and the pseudo-second-order kinetic model. The results represented that the quasi-second-order model with a higher regression coefficient (R2 = 0.97) described the experimental data better than the quasi-first-order one (R2 = 0.83). The adherence of adsorption kinetics to the pseudo-second-order model suggested a chemical interaction as the rate-determining step. Regarding adsorption thermodynamics, the effect of temperature was examined on adsorption by using Van't Hoff's equations, which reflect the endothermicity of the process. | ||
کلیدواژهها | ||
Adsorption؛ Cadmium؛ Kinetic model؛ Modified activated carbon؛ Thermodynamic model | ||
مراجع | ||
Afolabi, I.C., Popoola, S.I. and Bello, O.S. (2020). Modeling pseudo-second-order kinetics of orange peel-paracetamol adsorption process using artificial neural network. Chemometr. Intell. Lab. Syst., 203, 104053. Ahmadi, F .and Esmaeili, H. (2018). Chemically modified bentonite/Fe3O4 nanocomposite for Pb(II), Cd(II), and Ni(II) removal from synthetic wastewater. Desalination Water Treat., 110,154-167. Alakhras, F., Ouerfelli, N., AL-Mazaideh, G., Ababneh, T., A. Al-Alabbad, E. and Abouzeid, F. (2019). Optimal Pseudo-Average Order Kinetic Model for Correlating the Removal of Nickel Ions by Adsorption on Nanobentonite. Arab. J. Sci. Eng., 44 (1), 159-168. Ali, R.M. , Hamad, H.A. , Hussein, M.M. and Malash, G.F. (2016). Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. J. Ecol. Eng., 91, 317- 332. Ali Redha, A. (2020). Removal of heavy metals from aqueous media by biosorption. Arab. J. Basic Appl. Sci., 27 (1), 183-193. Alshahrani, A., Alharbi, A., Alnasser, S., Almihdar, M., Alsuhybani, M. and Al-Otaibi, B. (2021). Enhanced heavy metals removal by a novel carbon nanotubes buckypaper membrane containing a mixture of two biopolymers: Chitosan and i-carrageenan. Sep.Purif.Technol., 276, 119300. Amini, M., Ziaei Madbouni, M.A. and Sharifi, A. (2019). Investigating the Potential of Cadmium Ions Removal from Aqueous Solutions using Date-palm Leaf Ash. J. Env. Sci. Tech., 21 (5), 151-161. Andelescu, A., Nistor, M.A., Muntean, S.G. and Rădulescu-Grad, M.E. (2018). Adsorption studies on copper, cadmium, and zinc ion removal from aqueous solution using magnetite/carbon nanocomposites. Sep. Sci. Technol., 53 (15), 2352-2364. Anjum, H.,Chemat, F., Gnanasundaram, N., Arunagiri, A. and Thanabalan, M. (2017). Impact of surface modification of activated carbon on BTEX removal from aqueous solutions: a review. Air, Gas, and Water Pollution Control Using Industrial and Agricultural Solid Wastes Adsorbents, 293-312. Ayyanar, A. and Thatikonda, S. (2021). Enhanced electrokinetic removal of heavy metals from a contaminated lake sediment for ecological risk reduction. J. Soli Sediment Contam., 30 (1), 12-34. Baloji, D., Anil, K., Satyanarayana, K., Ul haq, A., Singh, S.K. and Naik, M.T. (2019). Evaluation and optimization of material properties of ASS316L at sub-zero temperature using taguchi robust design, Mater. Today: Proc., 18, 4475-4481. Bashir, A., Ahmad Malik, L., Ahad, S., Manzoor, T., Ahmad Bhat, M., Dar, G. N. and Hussain Pandith, A. (2019). Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods. Environ. Chem. Lett., 17 (2), 729-754 . Bavel, E., Afkhami, A. and Madrakian, T. (2020). Removal and Preconcentration of Pb (II) Heavy Metal Ion from Water and Waste-Water Samples onto Poly (vinyl alcohol)/polyethyleneimine/Fe3O4 Microfibers Nanocomposite. J. Polym. Environ., 28 (2), 614-623. Bhardwaj, A., Chand, P., Pakade, Y.B., Joshi, R. and Sharma, M. (2019). Kinetic and equilibrium studies on adsorption of cadmium from aqueous solution using Aesculus Indica seed shell. Indian J. Chem. Technol., 26 (2), 146-152. Blachnio, M., Derylo-Marczewska, A., Charmas, B., Zienkiewicz-Strzalka, M., Bogatyrov, V. and Galaburda, M. (2020). Activated carbon from agricultural wastes for adsorption of organic pollutants. Molecules., 25 (21), 5105 . Budhiary, K.N.S. and Sumantri, I. (2021). Langmuir and Freundlich isotherm adsorption using activated charcoal from banana peel to reduce total suspended solid (TSS) levels in tofu industry liquid waste. in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 1053, 012113. Chand, P., Shil, A.K. , Sharma, M. and Pakade, Y.B. (2014). Improved adsorption of cadmium ions from aqueous solution using chemically modified apple pomace: mechanism, kinetics, and thermodynamics. Int. Biodeterior. Biodegradation., 90, 8-16. Chang, C.K., Tun, H. and Chen, C.C. (2020). An activity-based formulation for Langmuir adsorption isotherm. Adsorption., 26 (3), 375-386. Chen, Z. ,Liu, T., Tang, J., Zheng, Z., Wang, H., Shao, Q., Chen, G., Li, Z., Chen, Y., Zhu, J. and Feng, T. (2018). Characteristics and mechanisms of cadmium adsorption from aqueous solution using lotus seedpod-derived biochar at two pyrolytic temperatures. Environ. Sci. Pollut. Res., 25 (12), 11854-11866. Dai, Y., Sun, Q., Wang, W., Lu, L., Liu, M., Li, J., Yang, S.h., Sun, Y., Zhang, K., Xu, J., Zheng, W., Hu, Z.h., Yang, Y., Gao, Y., Chen, Y., Zhang, X., Gao, F. and Zhang, Y. (2018). Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere., 211, 235-253. Delil, A.D., Köleli, N., Dağhan, H. and Bahçeci, G. (2020).Recovery of heavy metals from canola (Brassica napus) and soybean (Glycine max) biomasses using electrochemical process. Environ. Technol. Innov., 17, 100559. Deng, J. ,Fu, D. , Hu, W. , Lu, X. , Wu, Y. and Bryan, H. (2020). Physiological responses and accumulation ability of Microcystis aeruginosa to zinc and cadmium: implications for bioremediation of heavy metal pollution. J. Biotechnol., 303, 122963. Dirbaz, M. and Roosta A. (2018). Adsorption, kinetic and thermodynamic studies for the biosorption of cadmium onto microalgae Parachlorella sp. J. Environ. Chem. Eng. , 6 (2), 2302-2309. Duan, C., Ma, T. ,Wang, J. and Zhou, Y. (2020). Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review. J. Water Process. Eng ., 37, 101339. Esmaeili, H. and Tamjidi, S. (2020). Ultrasonic-assisted synthesis of natural clay/Fe3O4/graphene oxide for enhance removal of Cr (VI) from aqueous media. Environ. Sci. Pollut. Res., 27, 31652-31664. Foroutan, R., Mohammadi, R., Farjadfard, S., Esmaeili, H., Saberi, M., Sahebi, S., Dobarada ran, S. and Ramavandi, B. (2019). Characteristics and performance of Cd, Ni, and Pb bio-adsorption using Callinectes sapidus biomass: real wastewater treatment. Environ. Sci. Pollut. Res., 26, 6336-6347. Fronczak, M., Pyrzyńska, K., Bhattarai, A., Pietrowski , P. and Bystrzejewski, M.(2019). Improved adsorption performance of activated carbon covalently functionalized with sulfur-containing ligands in the removal of cadmium from aqueous solutions. Int. J. Environ. Sci. Technol., 16, 7921–7932. Ghaedi, A. M., Ghaedi, M. and Karami, P. (2015). Comparison of ultrasonic with stirrer performance for removal of sunset yellow (SY) by activated carbon prepared from wood of orange tree: Artificial neural network . Spectrochim Acta A Mol. Biomol. Spectrosc., 138, 789-799. Ghasemi, N. , Ghasemi, M. and Khosravi-Fard, Y. (2013). The Sorption of Ni (II) by grape shell ash from aqueous solution: kinetic and thermodynamic studies. Indian J. Mater. Sci., 2013. Han, Y., Boateng, A.A. , Qi, P.X. (2013). Lima IM and Chang J, Heavy metal and phenol adsorptive properties of biochars from pyrolyzed switchgrass and woody biomass in correlation with surface properties. J. Environ. Manage., 118, 196-204. HOCAOĞLU-ÖZYİĞİT, A. and GENÇ, B.N. (2020). Cadmium in plants, humans and the environment. Front Life Sci RT., 1 (1 ), 12-21. Jalali, M. and Aboulghazi, F. (2013). Sunflower stalk, an agricultural waste, as an adsorbent for the removal of lead and cadmium from aqueous solutions. J. Mater. Cycles Waste Manag .,15 (4), 548-555. Javidi Alsadi. K., and Esfandiari, N. (2019). Synthesis of activated carbon from sugarcane bagasse and application for mercury adsorption. Pollution, 5(3), 585-596. Karimpour, S.R., Besmi, M.R. and Mirimani, S. M.(2020). Optimal design and verification of interior permanent magnet synchronous generator based on FEA and Taguchi method, Int. Trans. Electr. Energy Syst., 30 (11), 12597. Khoshkerdar, I. and Esmaeili, H. (2019). Adsorption of Cr (III) and Cd (II) ions using mesoporous cobalt-ferrite nanocomposite from synthetic wastewater. Acta. Chim. Slov., 66, 208-216. Liao, Z.L., Zhao, Z.C., Zhu, J.C., Chen, H. and Meng, D.Z. (2021). Complexing characteristics between Cu (Ⅱ) ions and dissolved organic matter in combined sewer overflows: Implications for the removal of heavy metals by enhanced coagulation. Chemosphere., 265, 129023. Lima, E.C., Gomes, A.A. and Tran, H.N. (2020).Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (∆ S° and ∆ H°). J. Mol. Liq., 311, 113315 . Ma, B., Yao, J., Šolević Knudsen, T., Chen, Z., Liu, B., Zhao, C. and Zhu, X.(2021). Simultaneous removal of typical flotation reagent 8-hydroxyquinoline and Cr (VI) through heterogeneous Fenton-like processes mediated by polydopamine functionalized ATP supported nZVI. J. Haz. Mat., 424, 126698 Ma, F., Zhao, B. and Diao, J. (2016). Adsorption of cadmium by biochar produced from pyrolysis of corn stalk in aqueous solution. Water Sci. Technol., 74 (6), 1335-1345. Park, J..H , Ok, Y.S. , Kim, S.H., Cho, J.S. , Heo, J.S. , Delaune, R.D. and Seo, D.C. (2016). Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere., 142, 77-83. Parlayıcı, Ş., Sezer, K.T., and Pehlivan, E.(2020). Nano-ZrO2/TiO2 Impregnated Orange Wood Sawdust and Peach Stone Shell Adsorbents for Cr (VI) Removal. Currr. Anal. Chem.,16 (7), 880-892. Patwa, J. and Flora, S.J.S. (2021). Heavy metal-induced cerebral small vessel disease: Insights into molecular mechanisms and possible reversal strategies. Int. J. Mol. Sci ., 21 (11), 3862. Qiao, W., Zhang, Z., Qian,. Y, Xu, L. and Guo, H. (2022). Bacterial laccase immobilized on a magnetic dialdehyde cellulose without cross-linking agents for decolorization. Colloids Surf. A Physicochem. Eng., 632, 127818. Reljic, S., Cuadrado-Collados, C., Jardim,E.O., Farrando-Perez, J., Martinez-Escandell, M. and Silvestre-Albero, J. (2022) . Activated carbon materials with a rich surface chemistry prepared from L-cysteine amino acid. Fluid Phase Equilib , 558, 113446. Reza, M.S.,Yun, C.S., Afroze, S.,Radenahmad, N., Abu Bakar, M.S.,Saidur, R.,Taweekun, J. and Azad, A.K.(2020).Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review. Arab. J. Basic Appl. Sci., 27 (1), 208-238. Sepehr, E. and Tosan, A. (2016). Removal efficiency of some biosorbents in removing of cadmium from aqueous solution. J. Nat. Environ ., 68 (4), 583-594. Sharma, G. and Naushad, M.u. (2020).Adsorptive removal of noxious cadmium ions from aqueous medium using activated carbon/zirconium oxide composite: isotherm and kinetic modeling. J. Mol. Liq., 310, 113025. Takmil, F., Esmaeili, H., Mousavi, S. M. and Hashemi, S.A. (2020). Nano-magnetically modified activated carbon prepared by oak shell for treatment of wastewater containing fluoride ion. Adv. Powder. Technol., 31 (8), 3236-3245. Tamjidi, S. and Esmaeili, H. (2019). Chemically modified CaO/Fe3O4 nanocomposite by Sodium dodecyl sulfate for Cr (III) removal from water. Chem. Eng. Technol., 42 (3), 607-616. Vilela, P.B., Matias, C.A., Dalalibera, A., Becegato, V.A. and Paulino, A.T. (2019).Polyacrylic acid-based and chitosan-based hydrogels for adsorption of cadmium: Equilibrium isotherm, kinetic and thermodynamic studies. J. Environ. Chem. Eng., 7 (5), 103327. Yang, H., Wang, F.,Yu, J., Huang, K., Zhang, H. and Fu, Z. (2021). An improved weighted index for the assessment of heavy metal pollution in soils in Zhejiang, China. J. Env. Res., 192, 110246. Yang, T.,Yi, W., Cheng, T., Jiang, X. and Cheng, X. (2021). Enhanced fast response to Hg0 by adsorption-induced electronic structure evolution of Ti2C nanosheet. Appl. Surf. Sci., 544, 148925. Ye, S., Chen, Y., Yao, X., and Zhang, J. (2021). Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis: A review. Chemosphere., 273, 128503. | ||
آمار تعداد مشاهده مقاله: 653 تعداد دریافت فایل اصل مقاله: 673 |