تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,539 |
تعداد دریافت فایل اصل مقاله | 97,231,703 |
Clinical Evaluation of the Effect of Methylprednisolone Sodium Succinate and Meloxicam in Experimental Acute Spinal Cord Injury | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 4، دوره 17، شماره 2، تیر 2023، صفحه 129-138 اصل مقاله (1.36 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.17.2.1005246 | ||
نویسندگان | ||
Azin Khodabakhshi Rad1؛ Hossein Kazemi Mehrjerdi* 1؛ Mir Sepehr Pedram2؛ Mohammad Azizzadeh1؛ Shiva Amanollahi1 | ||
1Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran. | ||
2Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
چکیده | ||
Background: Central nervous system (CNS) has limited repair capacity, and any spinal cord injury (SCI) can cause persistent disability in motor, sensory, and autonomic functions. The harmful reactions around the lesion must be stopped to prevent this consequence. Objectives: The present study compares the clinical effects of methylprednisolone sodium succinate (MPSS) and meloxicam in acute spinal cord injury in an animal model of rats. Methods: We randomly divided 24 male Wistar rats into 4 groups: 1) sham, 2) placebo, 3) SCI+MPSS (30 mg/kg, IV), and 4) SCI+meloxicam (1 mg/kg, SC). We used a Fogarty embolectomy catheter to induce a compression injury to the rats’ T8-T9 spinal cord segment. The drugs were injected one hour after surgery. Neurological evaluation was performed using BBB (Basso, Beattie, and Bresnahan) test immediately after recovery and then once a week for up to 6 weeks. Results: According to the BBB test results, single-dose administration of MPSS one hour after injury improved motor function significantly compared to placebo. But, there was no significant difference between MPSS and meloxicam groups and between meloxicam and placebo groups (P>0.01). Conclusion: In clinical evaluation, single-dose administration of MPSS one hour after injury improved motor function compared to meloxicam. | ||
کلیدواژهها | ||
BBB (Basso؛ Beattie؛ and Bresnahan) test؛ Meloxicam؛ Methylprednisolone sodium succinate؛ Non-steroidal anti-inflammatory drugs (NSAIDs)؛ Spinal cord injury (SCI) | ||
اصل مقاله | ||
1. Introduction
2. Materials and Methods
3. Results
4. Discussion The effects of inhibitory and neuroprotective meloxicam in rats’ diffuse brain injury models were shown (Hakan et al., 2010). In a study, 30–60 min after induction of SCI, meloxicam (2 mg/kg/d) intraperitoneally was injected, and then it lasted for a week. It was finally determined that meloxicam improved histological and neurological conditions and had a neuroprotection effect on spinal cord trauma in rats. Meloxicam inhibited free radicals produced by lipid peroxidation, neutrophil infiltration, and DNA damage in SCI and had anti-inflammatory properties. Similar to our study, in the report of Hakan, locomotion scores were better in the meloxicam-treated group, probably due to repeated prescriptions, but it was not statistically significant compared to the control group (Hakan et al., 2010).
5. Conclusion
Ethical Considerations
Compliance with ethical guidelines
Funding
Authors' contributions
Conflict of interest
Acknowledgments
References Aiello, G., Mazzanti, A., Beckmann, D. V., Santos, R. P. D., Andrades, A. O. D., & Palma, H. E., et al. (2015). [Prednisona e meloxicam no tratamento de ratos submetidos ao trauma agudo da medula espinhal (Portuguese)]. Ciência Rural, 45, 124-130. [DOI:10.1590/0103-8478cr20131102] Ahuja, C. S., Wilson, J. R., Nori, S., Kotter, M., Druschel, C., & Curt, A., et al. (2017). Traumatic spinal cord injury. Nature Reviews Disease Primers, 3(1), 1-21. [DOI:10.1038/nrdp.2017.18] [PMID] Ahuja, C. S., & Fehlings, M. (2016). Concise review: Bridging the gap: Novel neuroregenerative and neuroprotective strategies in spinal cord injury. Stem Cells Translational Medicine, 5(7), 914-924. [DOI:10.5966/sctm.2015-0381] [PMID] [PMCID] Ahuja, C. S., Martin, A. R., & Fehlings, M. (2016). Recent advances in managing a spinal cord injury secondary to trauma. F1000Research, 5. F1000 Faculty Rev-1017. [DOI:10.12688/f1000research.7586.1] [PMID] [PMCID] Alizadeh, A., Dyck, S. M., & Karimi-Abdolrezaee, S. (2019). Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Frontiers in Neurology, 10, 282. [DOI:10.3389/fneur.2019.00282] [PMID] [PMCID] Anderson, M. A., Burda, J. E., Ren, Y., Ao, Y., O'Shea, T. M., & Kawaguchi, R., et al. (2016). Astrocyte scar formation aids central nervous system axon regeneration. Nature, 532(7598), 195–200. [DOI:10.1038/nature17623] [PMID] [PMCID] Beattie, M. S., Farooqui, A. A., & Bresnahan, J. C. (2000). Review of current evidence for apoptosis after spinal cord injury. Journal of Neurotrauma, 17(10), 915-925. [DOI:10.1089/neu.2000.17.915] [PMID] Bracken, M. B., Shepard, M. J., Collins, W. F., Jr, Holford, T. R., Baskin, D. S., & Eisenberg, H. M., et al. (1992). Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second national acute spinal cord injury study. Journal of Neurosurgery, 76(1), 23–31. [DOI:10.3171/jns.1992.76.1.0023] [PMID] Braughler, J. M., & Hall, E. D. (1984). Effects of multi-dose methylprednisolone sodium succinate administration on injured cat spinal cord neurofilament degradation and energy metabolism. Journal of Neurosurgery, 61(2), 290-295. [DOI:10.3171/jns.1984.61.2.0290] [PMID] Cheli, V. T., González, D. S., Spreuer, V., & Paez, P. M. (2015). Voltage-gated Ca++ entry promotes oligodendrocyte progenitor cell maturation and myelination in vitro. Experimental Neurology, 265, 69-83. [DOI:10.1016/j.expneurol.2014.12.012] [PMID] [PMCID] Fan, L. W., Bhatt, A., Tien, L. T., Zheng, B., Simpson, K. L., & Lin, R. C., et al. (2015). Exposure to serotonin adversely affects oligodendrocyte development and myelination in vitro. Journal of Neurochemistry, 133(4), 532-543. [DOI:10.1111/jnc.12988] [PMID] [PMCID] Fehlings, M. G., Tetreault, L. A., Wilson, J. R., Kwon, B. K., Burns, A. S., & Martin, A. R., et al. (2017). A clinical practice guideline for the management of acute spinal cord injury: Introduction, rationale, and scope. Global Spine Journal, 7(3_suppl), 84S-94S. [DOI:10.1177/2192568217703387] [PMID] [PMCID] Fehlings, M. G., Wilson, J. R., Harrop, J. S., Kwon, B. K., Tetreault, L. A., & Arnold, P. M., et al. (2017). Efficacy and safety of methylprednisolone sodium succinate in acute spinal cord injury: A systematic review. Global Spine Journal, 7(3_suppl), 116S-137S. [DOI: 10.1177/2192568217706366] [PMID] [PMCID] Fu, Q., Hue, J., & Li, S. (2007). Nonsteroidal anti-inflammatory drugs promote axon regeneration via RhoA inhibition. Journal of Neuroscience, 27(15), 4154-4164. [DOI:10.1523/JNEUROSCI.4353-06.2007] [PMID] [PMCID] Greeshma, K. C., Kumar, N. M., & Krishna, J. G. (2018). Preliminary pharmacognostical and phytochemical analysis of chassalia curviflora (wall.) thwaites roots. Journal of Pharmacognosy and Phytochemistry, 7(6), 1043-1048. [Link] Hakan, T., Toklu, H. Z., Biber, N., Ozevren, H., Solakoglu, S., & Demirturk, P., et al. (2010). Effect of COX-2 inhibitor meloxicam against traumatic brain injury-induced biochemical, histopathological changes and blood-brain barrier permeability. Neurological Research, 32(6), 629-635. [DOI:10.1179/016164109X12464612122731] [PMID] Hakan, T., Toklu, H. Z., Biber, N., Celik, H., Erzik, C., & Oğünç, A. V., et al. (2011). Meloxicam exerts neuroprotection on spinal cord trauma in rats. International Journal of Neuroscience, 121(3), 142-148. [DOI:10.3109/00207454.2010.537415] [PMID] Hall, E. D., & Braughler, J. M. (1982). Glucocorticoid mechanisms in acute spinal cord injury: A review and therapeutic rationale. Surgical Neurology, 18(5), 320-327. [DOI:10.1016/0090-3019(82)90140-9] [PMID] Hall, E. D., & Braughler, J. M. (1982). Effects of intravenous methylprednisolone on spinal cord lipid peroxidation and (Na++ K+)-ATPase activity: Dose-response analysis during 1st hour after contusion injury in the cat. Journal of Neurosurgery, 57(2), 247-253. [DOI:10.3171/jns.1982.57.2.0247] [PMID] Hayta, E., & Elden, H. (2018). Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention. Journal of Chemical Neuroanatomy, 87, 25-31. [DOI:10.1016/j.jchemneu.2017.08.001] [PMID] Islam, F., Akter, A., Mimi, A. A., Urmee, H., Islam, M. R., & Rahaman, M. S et al. (2022). Neuropharmacological effects of chassalia curviflora (rubiaceae) leaves in Swiss albino mice model. Archives of Razi Institute, 77(2), 881-890. [DOI:10.22092/ARI.2021.356880.1937] [PMID] [PMCID] Kjell, J., & Olson, L. (2016). Rat models of spinal cord injury: From pathology to potential therapies. Disease Models & Mechanisms, 9(10), 1125-1137. [DOI:10.1242/dmm.025833] [PMID] [PMCID] Kopp, M. A., Liebscher, T., Niedeggen, A., Laufer, S., Brommer, B., & Jungehulsing, G. J., et al. (2012). Small-molecule-induced rho-inhibition: NSAIDs after spinal cord injury. Cell and Tissue Research, 349(1), 119-132. [DOI:10.1007/s00441-012-1334-7] [PMID] [PMCID] Maseda, D., & Ricciotti, E. (2020). NSAID-gut microbiota interactions. Frontiers in Pharmacology, 11, 1153. [DOI:10.3389/fphar.2020.01153] [PMID] [PMCID] Means, E. D., Anderson, D. K., Waters, T. R., & Kalaf, L. (1981). Effect of Methylprednisolone in compression trauma to the feline spinal cord. Journal of Neurosurgery, 55(2), 200-208. [DOI:10.3171/jns.1981.55.2.0200] [PMID] Murgoci, A. N., Baciak, L., Cubinkova, V., Smolek, T., Tvrdik, T., & Juranek, I., et al. (2020). Diffusion tensor imaging: Tool for tracking injured spinal cord fibres in rat. Neurochemical Research, 45(1), 180-187. [DOI:10.1007/s11064-019-02801-9] [PMID] Nikjooy, N., Asghari, A., Hassanpour, S., & Arfaee, F. (2022). Study of anti-nociceptive role of the manna of hedysarum and the neurotransmitter systems involved in mice. Iranian Journal of Veterinary Medicine, 16(3), 265-273. [DOI:10.22059/IJVM.2022.332803.1005202] Pedram, M. S., Dehghan, M. M., Shojaee, M., Fekrazad, R., Sharifi, D., & Farzan, A., et al. (2018). Therapeutic effects of simultaneous photobiomodulation therapy (PBMT) and meloxicam administration on experimental acute spinal cord injury: Rat animal model. Journal of Photochemistry and Photobiology B: Biology, 189, 49-54. [DOI:10.1016/j.jphotobiol.2018.09.022] [PMID] Pedram, M. S., Dehghan, M. M., Soleimani, M., Sharifi, D., Marjanmehr, S. H., & Nasiri, Z. (2010). Transplantation of a combination of autologous neural differentiated and undifferentiated mesenchymal stem cells into injured spinal cord of rats. Spinal Cord, 48(6), 457-463. [DOI:10.1038/sc.2009.153] [PMID] Preisner, A., Albrecht, S., Cui, Q. L., Hucke, S., Ghelman, J., & Hartmann, C., et al. (2015). Non-steroidal anti-inflammatory drug indometacin enhances endogenous remyelination. Acta Neuropathologica, 130(2), 247-261. [DOI:10.1007/s00401-015-1426-z] [PMID] Pereira, J. E., Costa, L. M., Cabrita, A. M., Couto, P. A., Filipe, V. M., & Magalhães, L. G., et al. (2009). Methylprednisolone fails to improve functional and histological outcome following spinal cord injury in rats. Experimental Neurology, 220(1), 71-81. [DOI:10.1016/j.expneurol.2009.07.030] [PMID] Rezaei, S., Asghari, A., Hassanpour, S., & Arfaei, F. (2022). Anti-nociceptive mechanisms of testosterone in unilateral sciatic nerve ligated male rat. Iranian Journal of Veterinary Medicine, 16(1), 36-45. [DOI:10.22059/IJVM.2021.314813.1005143] Rosado, I. R., Lavor, M. S. L., Alves, E. G., Fukushima, F. B., Oliveira, K. M., & Silva, C. M. O., et al. (2014). Effects of methylprednisolone, dantrolene, and their combination on experimental spinal cord injury. International Journal of Clinical and Experimental Pathology, 7(8), 4617. [PMID] [PMCID] Salleh, W. M. N. H. W., Nafiah, M. A., & Khamis, S. (2021). Chemical composition and acetylcholinesterase inhibitory activity of chassalia curviflora (wall.) thwaites essential oil. Rivista Italiana Delle Sostanze Grasse, 98(2), 139-143. [Link] Sámano, C., Kaur, J., & Nistri, A. (2016). A study of methylprednisolone neuroprotection against acute injury to the rat spinal cord in vitro. Neuroscience, 315, 136-149. [DOI:10.1016/j.neuroscience.2015.12.003] [PMID] Sayin, M., Temiz, P., Var, A., & Temiz, C. (2013). The dose-dependent neuroprotective effect of alpha-lipoic acid in experimental spinal cord injury. Neurologia i Neurochirurgia Polska, 47(4), 345-351. [DOI:10.5114/ninp.2013.36207] [PMID] Seo, J. Y., Kim, Y. H., Kim, J. W., Kim, S. I., & Ha, K. Y. (2015). Effects of therapeutic hypothermia on apoptosis and autophagy after spinal cord injury in rats. Spine, 40(12), 883-890. [DOI:10.1097/BRS.0000000000000845] [PMID] Sharma, A., Tiwari, R., Badhe, P., & Sharma, G. (2004). Comparison of methylprednisolone with dexamethasone in treatment of acute spinal injury in rats. Indian Journal of Experimental Biology, 42(5), 476–480. [PMID] Silver, J., Schwab, M. E., & Popovich, P. G. (2015). Central nervous system regenerative failure: Role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harbor Perspectives in Biology, 7(3), a020602. [DOI:10.1101/cshperspect.a020602] [PMID] [PMCID] Singla, N., Bindewald, M., Singla, S., Leiman, D., Minkowitz, H., & McCallum, S. W., et al. (2018). Efficacy and safety of intravenous meloxicam in subjects with moderate-to-severe pain following abdominoplasty. Plastic and Reconstructive Surgery Global Open, 6(6). [DOI:10.1097/GOX.0000000000001846] [PMID] [PMCID] Topsakal, C., Erol, F. S., Ozveren, F. M., Yilmaz, N., & Ilhan, N. (2002). Effects of methylprednisolone and dextromethorphan on lipid peroxidation in an experimental model of spinal cord injury. Neurosurgical Review, 25(4), 258-266. [DOI:10.1007/s101430100183] [PMID] Ulndreaj, A., Badner, A., & Fehlings, M. G. (2017). Promising neuroprotective strategies for traumatic spinal cord injury with a focus on the differential effects among anatomical levels of injury. F1000Research, 6. [DOI:10.12688/f1000research.11633.1] [PMID] [PMCID] Vanický, I., Urdzíková, L., Saganová, K., Čízková, D., & Gálik, J. (2001). A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. Journal of Neurotrauma, 18(12), 1399-1407. [DOI:10.1089/08977150152725687] [PMID] Vaquie, A., Sauvain, A., Duman, M., Nocera, G., Egger, B., & Meyenhofer, F., et al. (2019). Injured axons instruct schwann cells to build constricting actin spheres to accelerate axonal disintegration. Cell Reports, 27(11), 3152-3166. [DOI:10.1016/j.celrep.2019.05.060] [PMID] Wilson, J. R., Forgione, N., & Fehlings, M. G. (2013). Emerging therapies for acute traumatic spinal cord injury. CMAJ, 185(6), 485-492. [DOI:10.1503/cmaj.121206] [PMID] [PMCID] Wu, B., & Ren, X. (2009). Promoting axonal myelination for improving neurological recovery in spinal cord injury. Journal of Neurotrauma, 26(10), 1847-1856. [DOI:10.1089/neu.2008.0551] [PMID] Xing, B., Li, H., Wang, H., Mukhopadhyay, D., Fisher, D., & Gilpin, C. J., et al. (2011). RhoA-inhibiting NSAIDs promote axonal myelination after spinal cord injury. Experimental Neurology, 231(2), 247-260. [DOI:10.1016/j.expneurol.2011.06.018] [PMID] [PMCID] Zhang, H., Liu, Y., Zhou, K., Wei, W., & Liu, Y. (2021). Restoring sensorimotor function through neuromodulation after spinal cord injury: Progress and remaining challenges. Frontiers in Neuroscience, 15. [DOI:10.3389/fnins.2021.749465] [PMID] [PMCID] Zhou, Y., Su, Y., Li, B., Liu, F., Ryder, J. W., &Wu, X., et al. (2003). Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Aß42 by inhibiting Rho. Science, 302(5648), 1215-1217. [DOI:10.1126/science.1090154] [PMID] | ||
مراجع | ||
Aiello, G., Mazzanti, A., Beckmann, D. V., Santos, R. P. D., Andrades, A. O. D., & Palma, H. E., et al. (2015). [Prednisona e meloxicam no tratamento de ratos submetidos ao trauma agudo da medula espinhal (Portuguese)]. Ciência Rural, 45, 124-130. [DOI:10.1590/0103-8478cr20131102] Ahuja, C. S., Wilson, J. R., Nori, S., Kotter, M., Druschel, C., & Curt, A., et al. (2017). Traumatic spinal cord injury. Nature Reviews Disease Primers, 3(1), 1-21. [DOI:10.1038/nrdp.2017.18] [PMID] Ahuja, C. S., & Fehlings, M. (2016). Concise review: Bridging the gap: Novel neuroregenerative and neuroprotective strategies in spinal cord injury. Stem Cells Translational Medicine, 5(7), 914-924. [DOI:10.5966/sctm.2015-0381] [PMID] [PMCID] Ahuja, C. S., Martin, A. R., & Fehlings, M. (2016). Recent advances in managing a spinal cord injury secondary to trauma. F1000Research, 5. F1000 Faculty Rev-1017. [DOI:10.12688/f1000research.7586.1] [PMID] [PMCID] Alizadeh, A., Dyck, S. M., & Karimi-Abdolrezaee, S. (2019). Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms. Frontiers in Neurology, 10, 282. [DOI:10.3389/fneur.2019.00282] [PMID] [PMCID] Anderson, M. A., Burda, J. E., Ren, Y., Ao, Y., O'Shea, T. M., & Kawaguchi, R., et al. (2016). Astrocyte scar formation aids central nervous system axon regeneration. Nature, 532(7598), 195–200. [DOI:10.1038/nature17623] [PMID] [PMCID] Beattie, M. S., Farooqui, A. A., & Bresnahan, J. C. (2000). Review of current evidence for apoptosis after spinal cord injury. Journal of Neurotrauma, 17(10), 915-925. [DOI:10.1089/neu.2000.17.915] [PMID] Bracken, M. B., Shepard, M. J., Collins, W. F., Jr, Holford, T. R., Baskin, D. S., & Eisenberg, H. M., et al. (1992). Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second national acute spinal cord injury study. Journal of Neurosurgery, 76(1), 23–31. [DOI:10.3171/jns.1992.76.1.0023] [PMID] Braughler, J. M., & Hall, E. D. (1984). Effects of multi-dose methylprednisolone sodium succinate administration on injured cat spinal cord neurofilament degradation and energy metabolism. Journal of Neurosurgery, 61(2), 290-295. [DOI:10.3171/jns.1984.61.2.0290] [PMID] Cheli, V. T., González, D. S., Spreuer, V., & Paez, P. M. (2015). Voltage-gated Ca++ entry promotes oligodendrocyte progenitor cell maturation and myelination in vitro. Experimental Neurology, 265, 69-83. [DOI:10.1016/j.expneurol.2014.12.012] [PMID] [PMCID] Fan, L. W., Bhatt, A., Tien, L. T., Zheng, B., Simpson, K. L., & Lin, R. C., et al. (2015). Exposure to serotonin adversely affects oligodendrocyte development and myelination in vitro. Journal of Neurochemistry, 133(4), 532-543. [DOI:10.1111/jnc.12988] [PMID] [PMCID] Fehlings, M. G., Tetreault, L. A., Wilson, J. R., Kwon, B. K., Burns, A. S., & Martin, A. R., et al. (2017). A clinical practice guideline for the management of acute spinal cord injury: Introduction, rationale, and scope. Global Spine Journal, 7(3_suppl), 84S-94S. [DOI:10.1177/2192568217703387] [PMID] [PMCID] Fehlings, M. G., Wilson, J. R., Harrop, J. S., Kwon, B. K., Tetreault, L. A., & Arnold, P. M., et al. (2017). Efficacy and safety of methylprednisolone sodium succinate in acute spinal cord injury: A systematic review. Global Spine Journal, 7(3_suppl), 116S-137S. [DOI: 10.1177/2192568217706366] [PMID] [PMCID] Fu, Q., Hue, J., & Li, S. (2007). Nonsteroidal anti-inflammatory drugs promote axon regeneration via RhoA inhibition. Journal of Neuroscience, 27(15), 4154-4164. [DOI:10.1523/JNEUROSCI.4353-06.2007] [PMID] [PMCID] Greeshma, K. C., Kumar, N. M., & Krishna, J. G. (2018). Preliminary pharmacognostical and phytochemical analysis of chassalia curviflora (wall.) thwaites roots. Journal of Pharmacognosy and Phytochemistry, 7(6), 1043-1048. [Link] Hakan, T., Toklu, H. Z., Biber, N., Ozevren, H., Solakoglu, S., & Demirturk, P., et al. (2010). Effect of COX-2 inhibitor meloxicam against traumatic brain injury-induced biochemical, histopathological changes and blood-brain barrier permeability. Neurological Research, 32(6), 629-635. [DOI:10.1179/016164109X12464612122731] [PMID] Hakan, T., Toklu, H. Z., Biber, N., Celik, H., Erzik, C., & Oğünç, A. V., et al. (2011). Meloxicam exerts neuroprotection on spinal cord trauma in rats. International Journal of Neuroscience, 121(3), 142-148. [DOI:10.3109/00207454.2010.537415] [PMID] Hall, E. D., & Braughler, J. M. (1982). Glucocorticoid mechanisms in acute spinal cord injury: A review and therapeutic rationale. Surgical Neurology, 18(5), 320-327. [DOI:10.1016/0090-3019(82)90140-9] [PMID] Hall, E. D., & Braughler, J. M. (1982). Effects of intravenous methylprednisolone on spinal cord lipid peroxidation and (Na++ K+)-ATPase activity: Dose-response analysis during 1st hour after contusion injury in the cat. Journal of Neurosurgery, 57(2), 247-253. [DOI:10.3171/jns.1982.57.2.0247] [PMID] Hayta, E., & Elden, H. (2018). Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention. Journal of Chemical Neuroanatomy, 87, 25-31. [DOI:10.1016/j.jchemneu.2017.08.001] [PMID] Islam, F., Akter, A., Mimi, A. A., Urmee, H., Islam, M. R., & Rahaman, M. S et al. (2022). Neuropharmacological effects of chassalia curviflora (rubiaceae) leaves in Swiss albino mice model. Archives of Razi Institute, 77(2), 881-890. [DOI:10.22092/ARI.2021.356880.1937] [PMID] [PMCID] Kjell, J., & Olson, L. (2016). Rat models of spinal cord injury: From pathology to potential therapies. Disease Models & Mechanisms, 9(10), 1125-1137. [DOI:10.1242/dmm.025833] [PMID] [PMCID] Kopp, M. A., Liebscher, T., Niedeggen, A., Laufer, S., Brommer, B., & Jungehulsing, G. J., et al. (2012). Small-molecule-induced rho-inhibition: NSAIDs after spinal cord injury. Cell and Tissue Research, 349(1), 119-132. [DOI:10.1007/s00441-012-1334-7] [PMID] [PMCID] Maseda, D., & Ricciotti, E. (2020). NSAID-gut microbiota interactions. Frontiers in Pharmacology, 11, 1153. [DOI:10.3389/fphar.2020.01153] [PMID] [PMCID] Means, E. D., Anderson, D. K., Waters, T. R., & Kalaf, L. (1981). Effect of Methylprednisolone in compression trauma to the feline spinal cord. Journal of Neurosurgery, 55(2), 200-208. [DOI:10.3171/jns.1981.55.2.0200] [PMID] Murgoci, A. N., Baciak, L., Cubinkova, V., Smolek, T., Tvrdik, T., & Juranek, I., et al. (2020). Diffusion tensor imaging: Tool for tracking injured spinal cord fibres in rat. Neurochemical Research, 45(1), 180-187. [DOI:10.1007/s11064-019-02801-9] [PMID] Nikjooy, N., Asghari, A., Hassanpour, S., & Arfaee, F. (2022). Study of anti-nociceptive role of the manna of hedysarum and the neurotransmitter systems involved in mice. Iranian Journal of Veterinary Medicine, 16(3), 265-273. [DOI:10.22059/IJVM.2022.332803.1005202] Pedram, M. S., Dehghan, M. M., Shojaee, M., Fekrazad, R., Sharifi, D., & Farzan, A., et al. (2018). Therapeutic effects of simultaneous photobiomodulation therapy (PBMT) and meloxicam administration on experimental acute spinal cord injury: Rat animal model. Journal of Photochemistry and Photobiology B: Biology, 189, 49-54. [DOI:10.1016/j.jphotobiol.2018.09.022] [PMID] Pedram, M. S., Dehghan, M. M., Soleimani, M., Sharifi, D., Marjanmehr, S. H., & Nasiri, Z. (2010). Transplantation of a combination of autologous neural differentiated and undifferentiated mesenchymal stem cells into injured spinal cord of rats. Spinal Cord, 48(6), 457-463. [DOI:10.1038/sc.2009.153] [PMID] Preisner, A., Albrecht, S., Cui, Q. L., Hucke, S., Ghelman, J., & Hartmann, C., et al. (2015). Non-steroidal anti-inflammatory drug indometacin enhances endogenous remyelination. Acta Neuropathologica, 130(2), 247-261. [DOI:10.1007/s00401-015-1426-z] [PMID] Pereira, J. E., Costa, L. M., Cabrita, A. M., Couto, P. A., Filipe, V. M., & Magalhães, L. G., et al. (2009). Methylprednisolone fails to improve functional and histological outcome following spinal cord injury in rats. Experimental Neurology, 220(1), 71-81. [DOI:10.1016/j.expneurol.2009.07.030] [PMID] Rezaei, S., Asghari, A., Hassanpour, S., & Arfaei, F. (2022). Anti-nociceptive mechanisms of testosterone in unilateral sciatic nerve ligated male rat. Iranian Journal of Veterinary Medicine, 16(1), 36-45. [DOI:10.22059/IJVM.2021.314813.1005143] Rosado, I. R., Lavor, M. S. L., Alves, E. G., Fukushima, F. B., Oliveira, K. M., & Silva, C. M. O., et al. (2014). Effects of methylprednisolone, dantrolene, and their combination on experimental spinal cord injury. International Journal of Clinical and Experimental Pathology, 7(8), 4617. [PMID] [PMCID] Salleh, W. M. N. H. W., Nafiah, M. A., & Khamis, S. (2021). Chemical composition and acetylcholinesterase inhibitory activity of chassalia curviflora (wall.) thwaites essential oil. Rivista Italiana Delle Sostanze Grasse, 98(2), 139-143. [Link] Sámano, C., Kaur, J., & Nistri, A. (2016). A study of methylprednisolone neuroprotection against acute injury to the rat spinal cord in vitro. Neuroscience, 315, 136-149. [DOI:10.1016/j.neuroscience.2015.12.003] [PMID] Sayin, M., Temiz, P., Var, A., & Temiz, C. (2013). The dose-dependent neuroprotective effect of alpha-lipoic acid in experimental spinal cord injury. Neurologia i Neurochirurgia Polska, 47(4), 345-351. [DOI:10.5114/ninp.2013.36207] [PMID] Seo, J. Y., Kim, Y. H., Kim, J. W., Kim, S. I., & Ha, K. Y. (2015). Effects of therapeutic hypothermia on apoptosis and autophagy after spinal cord injury in rats. Spine, 40(12), 883-890. [DOI:10.1097/BRS.0000000000000845] [PMID] Sharma, A., Tiwari, R., Badhe, P., & Sharma, G. (2004). Comparison of methylprednisolone with dexamethasone in treatment of acute spinal injury in rats. Indian Journal of Experimental Biology, 42(5), 476–480. [PMID] Silver, J., Schwab, M. E., & Popovich, P. G. (2015). Central nervous system regenerative failure: Role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harbor Perspectives in Biology, 7(3), a020602. [DOI:10.1101/cshperspect.a020602] [PMID] [PMCID] Singla, N., Bindewald, M., Singla, S., Leiman, D., Minkowitz, H., & McCallum, S. W., et al. (2018). Efficacy and safety of intravenous meloxicam in subjects with moderate-to-severe pain following abdominoplasty. Plastic and Reconstructive Surgery Global Open, 6(6). [DOI:10.1097/GOX.0000000000001846] [PMID] [PMCID] Topsakal, C., Erol, F. S., Ozveren, F. M., Yilmaz, N., & Ilhan, N. (2002). Effects of methylprednisolone and dextromethorphan on lipid peroxidation in an experimental model of spinal cord injury. Neurosurgical Review, 25(4), 258-266. [DOI:10.1007/s101430100183] [PMID] Ulndreaj, A., Badner, A., & Fehlings, M. G. (2017). Promising neuroprotective strategies for traumatic spinal cord injury with a focus on the differential effects among anatomical levels of injury. F1000Research, 6. [DOI:10.12688/f1000research.11633.1] [PMID] [PMCID] Vanický, I., Urdzíková, L., Saganová, K., Čízková, D., & Gálik, J. (2001). A simple and reproducible model of spinal cord injury induced by epidural balloon inflation in the rat. Journal of Neurotrauma, 18(12), 1399-1407. [DOI:10.1089/08977150152725687] [PMID] Vaquie, A., Sauvain, A., Duman, M., Nocera, G., Egger, B., & Meyenhofer, F., et al. (2019). Injured axons instruct schwann cells to build constricting actin spheres to accelerate axonal disintegration. Cell Reports, 27(11), 3152-3166. [DOI:10.1016/j.celrep.2019.05.060] [PMID] Wilson, J. R., Forgione, N., & Fehlings, M. G. (2013). Emerging therapies for acute traumatic spinal cord injury. CMAJ, 185(6), 485-492. [DOI:10.1503/cmaj.121206] [PMID] [PMCID] Wu, B., & Ren, X. (2009). Promoting axonal myelination for improving neurological recovery in spinal cord injury. Journal of Neurotrauma, 26(10), 1847-1856. [DOI:10.1089/neu.2008.0551] [PMID] Xing, B., Li, H., Wang, H., Mukhopadhyay, D., Fisher, D., & Gilpin, C. J., et al. (2011). RhoA-inhibiting NSAIDs promote axonal myelination after spinal cord injury. Experimental Neurology, 231(2), 247-260. [DOI:10.1016/j.expneurol.2011.06.018] [PMID] [PMCID] Zhang, H., Liu, Y., Zhou, K., Wei, W., & Liu, Y. (2021). Restoring sensorimotor function through neuromodulation after spinal cord injury: Progress and remaining challenges. Frontiers in Neuroscience, 15. [DOI:10.3389/fnins.2021.749465] [PMID] [PMCID] Zhou, Y., Su, Y., Li, B., Liu, F., Ryder, J. W., &Wu, X., et al. (2003). Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Aß42 by inhibiting Rho. Science, 302(5648), 1215-1217. [DOI:10.1126/science.1090154] [PMID] | ||
آمار تعداد مشاهده مقاله: 822 تعداد دریافت فایل اصل مقاله: 647 |