تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,100,564 |
تعداد دریافت فایل اصل مقاله | 97,207,424 |
بهینهسازی الگو و تراکم کشت تحت شرایط تغییر اقلیم (مطالعۀ موردی: دشت دامنه ـ داران) | ||
اکوهیدرولوژی | ||
دوره 9، شماره 1، فروردین 1401، صفحه 227-242 اصل مقاله (1.61 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2022.330665.1552 | ||
نویسندگان | ||
آیسن یوسف دوست1؛ عباس خاشعی سیوکی2؛ امیر سالاری* 3 | ||
1دانشجوی دکتری مهندسی منابع آب، گروه مهندسی آب، دانشکدۀ کشاورزی، دانشگاه بیرجند | ||
2استاد، گروه مهندسی آب، دانشکدۀ کشاورزی، دانشگاه بیرجند | ||
3استادیار، گروه علوم و مهندسی آب، مجتمع آموزش عالی میناب، دانشگاه هرمزگان | ||
چکیده | ||
کشاورزی به علت ماهیت بیولوژیکی آن و وابستگی شدید به طبیعت بزرگترین مصرفکنندۀ منابع آبی در بیشتر کشورها است. بنابراین، امروزه مدیریت آب در این بخش نقش مهمی را در مصرف منابع آب کشورها بازی میکند. مطالعۀ حاضر با هدف بهینهسازی سطح زیر کشت، تخصیص آب آبیاری و حداکثرسازی سود حاصل از کشت محصولات زراعی دشت دامنهـ داران استان اصفهان در دورۀ ۲۰17- ۲۰30 تحت سناریوی RPC8.5 گزارش پنجم تغییر اقلیم با کمک الگوریتم ژنتیک انجام شد. نتایج حاصل از اجرای مدل در بخش تغییر اقلیم پس از تخمین رواناب ماهانۀ حوضه به وسیلۀ مدل AWBM با ضریب همسبتگی 75 درصدی نشان داد مقادیر RMSE، MBE و R پارامترهای ریزمقیاسسازیشده توسط مدل ریزمقیاسساز آماری (SDSM) بهترتیب برابر 34/۸، ۵۱/۷ و 98/0در پارامتر دما و ۲۸/۱-، ۲۸/۶ و 78/0در پارامتر بارش است. بهینهسازی الگوی کشت در منطقۀ مطالعهشده باعث کاهش سطح زیر کشت محصولات گندم، جو، چغندرقند و ذرت علوفهای بهترتیب به مقدار ۶/۲۱۳۰، ۱/۱۱۷۶، ۸/۱۱۲ و ۵۱۶ هکتار، افزایش سطح زیر کشت سیبزمینی به مقدار ۵/۳۹۳۵ هکتار، صرفهجویی مصرف آب بخش کشاورزی طی سالهای ۲۰17- ۲۰30 به مقدار ۲۱/۱۸ میلیون مترمکعب و افزایش سود کلی کشاورزان منطقه به میزان 163 میلیون تومان شد. | ||
کلیدواژهها | ||
سناریوی پنجم تغییر اقلیم؛ مدل AWBM؛ الگوریتم ژنتیک | ||
مراجع | ||
[1]. Ashraf Vaghefi S, Abbaspour N, Kamali B, Abbaspour K.C. A toolkit for climate change analysis and pattern recognition for extreme weather conditions – Case study: California-Baja California Peninsula. Environmental Modelling & Software. 2017; 96: 181-198.
[2]. Ouyang F, Zhu Y, Fu G, Lü H, Zhang A, Yu Z, Chen X. Impacts of climate change under CMIP5 RCP scenarios on streamflow in the Huangnizhuang catchment. Stochastic Environmental Research and Risk Assessment. 2015; 29(7): 1781- 1795.
[3]. Van Vuuren, D.P, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt G.C, Kram T, Krey V, Lamarque J.F, Masui T, Meinshausen M, Nakicenovic N, Smith S.J, Rose S.K. The representative concentration pathways: an overview. Climatic Change. 2011; 109: 1- 5.
[4]. Ho J. T, Thompson J. R, Brierley C. Projections of hydrology in the Tocantins Araguaia Basin, Brazil: uncertainty assessment using the CMIP5 ensemble. Hydrological Sciences Journal. 2016; 61(3): 551-567.
[5]. Kim J, Choi J, Choi C, Park S. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Science of the Total Environment. 2013; 452: 181-195.
[6]. Kwak J, Kim S, Singh V.P, Kim H.S, Kim D, Hong S, Lee K.. Impact of climate change on hydrological droughts in the upper Namhan River basin, Korea. KSCE Journal of Civil Engineering. 2015; 19(2): 376-384.
[7]. Tan M. L, Ibrahim A. L, Yusop Z, Chua V. P, Chan N. W. Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia. Atmospheric Research. 2017; 189: 1-10.
[8]. Vaighan A. A, Talebbeydokhti N, Bavani A. M. Assessing the impacts of climate and land use change on streamflow, water quality and suspended sediment in the Kor River Basin, Southwest of Iran. Environmental Earth Sciences. 2017; 76(15): 1- 18.
[9]. Houshmand Kouchi D, Esmaili K, Faridhosseini A, Sanaei-Nejad S. H, Khalili D. Simulation of climate change impacts using fifth assessment report models under RCP scenarios on water resources in the upper basin of Salman Farsi dam. Iranian journal of irrigation and drainage. 2019; 2(13): 243- 258. (In Persian). [10]. Blanco M, Cortignani R, Severini S. Evaluating changes in cropping patterns due to the 2003 CAP reform, an ex-post analysis of different pmp approaches considering new activities. Presentation at the 107th EAAE Seminar Modelling of Agricultural and Rural Development Policies. 2007: 15 P.
[11]. Withey P, Kooten C. The effect of climate change on land use and wetlands conservation in western Canada.Resource Economics & Policy Analysis. Research Group Department of Economics University of Victoria. 2011. 23 P.
[12]. Terry G. Climate, change and insecurity: Views from a Gisu hillside. Doctoral thesis, University of East Anglia. 2011.
[13]. Chijioke O.B, Haile M, Waschkeit C. Implication of climate change on crop yeild and food accessibility in sub-Sahran Africa. MSc Thesis, Bon University. 2011. 31 P.
[14]. Soleymaninejan S, Dourandish A, Sabouhisabouni M. Banayanaval M. The effects of climate change on cropping pattern (Case study: Mashhad plain). Iranian journal of agricultural economics and development research. 2019; 50(2): 249- 263. (In Persian).
[15]. Azuara J, Howitt R, MacEwan D, Lund J. Economic impacts of climate-related changes to California agriculture. Journal of Climatic Change. 2011; 109: 387-405.
[16]. Connor J, Kirby M, Schwabe K, Liukasiewics A, Kaczan D. Impacts of reduced water availability on lower murray irrigation, Australia, socio-economics and the environment in discussion. CSIRO working paper series. 2008. 7- 11.
[17]. Ozkan B, Akcaoz H. Impacts of climate factors on yields for selected crops in southern Turkey. Journal of Mitigation and Adaptation Strategies for Global Change. 2002; 7: 367–380.
[18]. Semenov M.A. Simulation of extreme weather events by a stochastic weather generator. Climate Research. 2008; 35: 203-212.
[19]. Mislan M, Haviluddin H, Hardwinarto S, Sumaryono B, Aipassa M. Rainfall monthly prediction based on Artificial Neural Network: A case study in Tenggarong Station, East Kalimantan – Indonesia. Journal of Computer Science. 2015; 59: 142 –151.
[20]. Shafie A.H, El-Shafie A, Hasan G, Mazoghi A, Mohd R. Artificial neural network technique for rainfall forecasting applied to Alexandria. International Journal of the Physical Sciences. 2011; 6: 1306-1316.
[21]. Aksorn P, Srinilta Ch. Statistical Downscaling for rainfall and temperature prediction in Thailand. Proceedings of the international multi conference of engineers and computer scientists. 2011; MARCH 16 – 18, Hong Kong.
[22]. Ashofteh P. S, Haddad O. B, Mariño M. Climate Change Impact on Reservoir Performance Indexes in Agricultural Water Supply. Journal of Irrigation and Drainage Engineering. 2013; 139(2): 85–97.
[23]. Zhou Y, Guo S. Incorporating ecological requirement into multipurpose reservoir operating rule curves for adaptation to climate change. Journal of Hydrology. 2013; 498: 153–164
[24]. Huang J, Zhang J, Zhang Z, Sun S, Yao J. Simulation of extreme precipitation indices in the Yangtze River basin by using statistical downscaling method (SDSM). Theoretical and Applied Climatology. 2012; 108(3–4): 325–343.
[25]. Coulibaly P, Dibike Y. B, Anctil F, Coulibaly P, Dibike Y. B, Anctil F. Downscaling precipitation and temperature with temporal neural networks. Journal of Hydrometeorology. 2005; 6(4): 483–496.
[26]. Goodarzi E, Dastorani M, Massahbavani A, Talebi A. Evaluation of the change-factor and LARS-WG methods of downscaling for simulation of climatic variables in the future (Case study: Herat Azam Watershed, Yazd - Iran). ECOPERSIA. 2015; 3(1): 833–846. (In Persian).
[27]. Zarrin H, Moghadamnia A, Namdroust J, Sadeghi S. H. Evaluation of AWBM model performance in simulation of rainfall -runoff process in nNon-statistics areas. Third conference on water resources management, Tabriz, Iranian association of water resources science and engineering, Tabriz University. 2008. (In Persian).
[28]. Dima W. Nazer A, Amaury Tilmant B, Ziad Mimi C, Maarten A. Siebel B, Pieter Vander Zaag B. E, Huub J. Gijzen d. Optimizing irrigation water use in the West Bank, Palestine. Agricultural Water Management. 2010; 97: 339-345.
[29]. Sadati S, Speelman S, Sabouhi M, Gitizadeh M, Ghahraman B. Optimal irrigation water allocation using a genetic algorithm under various weather conditions. Water. 2014; 6(10): 3068–3084.
[30]. Mohammadrezapour O, Yoosefdoost I, Ebrahimi M. Cuckoo optimization algorithm in optimal water allocation and crop planning under various weather conditions (case study: Qazvin plain, Iran). Neural Computing and Applications. 2017; 31(1): 1879–1892.
[31]. Meftah Halaghi M, Ghorbani Kh, Keramatzadeh A, Salarijazi M. Application of game theory to determining optimal harvesting of water resources and determination of optimal cropp pattern (Case study: Gharesu basin). Iranian Journal of Water and Soil Conservation. 2021; 27(5): 69- 87. (In Persian).
[32]. Abedinpour A. A, Jabbarzadeh A, Yahyaei M. A multi-objective mathematical modeling for optimization of crop planning problem under Z-number uncertainty. Iranian Journal of Water and Soil Conservation. 2019; 25(5): 1- 24. (In Persian).
[33]. Georgiou P. E, Papamichail D. M. Optimization model of an irrigation reservoir for water allocation and crop planning under various weather conditions. Irrigation Science. 2008; 26(6): 487–504.
[34]. Nazarifar M. H, Salari A, Momeni R.. Development of a nonlinear programming model for determination of optimal cropping pattern based on deficit irrigation scenarios. Iranian journal of soil and water research. 2018; 49(5): 1055- 1070. (In Persian).
[35]. Anonymous. Water resources balance of Gavkhuni basin study area to Blue water. Isfahan eegional water corporation, Office of basic water resources studies. 2010. (In Persian) [36]. Anonymous. The plain is the most critical slope of Frieden in terms of water resources depletion. Iran Islamic Republic News Agency. 2014. (In Persian)
[37]. Yoosefdoost A, Yoosefdoost I, Asghari H, Sadeghian M. Comparison of HadCM3, CSIRO Mk3 and GFDL CM2.1 in prediction the climate change in Taleghan river basin. American Journal of Civil Engineering and Architecture. 2018. 6(3):93-100.
[38]. Yoosefdoost I, Siuki A. K, Mohammadrezapour O, Tabari H. Evaluating performance of four statistical downscaling models (SDSM) of precipitation and temperature data under the fifth assessment report of the intergovernmental panel on climate change (IPCC) scenarios. Journal of Climate Research. 2021. 45: 43- 66. (In Persian).
[39].Yoosefdoost I, Mohammadrezapour O, Ebrahimi M. Applying genetic algorithms in determining optimal cropping pattern in different weather conditions in qazvin plain. Iranian journal of water research in agriculture. 2016. 30(3): 317- 331. (In Persian).
[40]. Jensen M. E. Chapter 1: Water defecits and plant groth. ,New York, USA: In: Plants, Water consumption by agricultural. 1968. 22 P. | ||
آمار تعداد مشاهده مقاله: 242 تعداد دریافت فایل اصل مقاله: 269 |