تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,100,735 |
تعداد دریافت فایل اصل مقاله | 97,207,652 |
بررسی هیدروژئوشیمیایی و ژئوترمومتری چشمههای آب گرم سیستم ژئوترمال منطقۀ شوط- ماکو | ||
اکوهیدرولوژی | ||
دوره 9، شماره 1، فروردین 1401، صفحه 47-61 اصل مقاله (1.46 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2022.331880.1562 | ||
نویسندگان | ||
نصرت آقازاده* 1؛ توحید پاشایی قرگوز2 | ||
1استادیار گروه عمران، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران | ||
2دانش آموختۀ گروه زمین شناسی، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران | ||
چکیده | ||
هدف از این پژوهش، بررسی خصوصیات هیدروژئوشیمیایی چشمههای آب گرم مربوط به میدان زمینگرمایی خوی- ماکو، تأثیر واحدهای سنگی و نقش سیالات هیدروترمال بر افزایش غلظت عناصر در ترکیب آب چشمهها و تخمین دمای مخزن بود که برای این منظور در شهریورماه 1397 از آب چشمههای گرم و سرد منطقۀ مطالعهشده نمونهبرداری صورت گرفت. نتایج بررسیهای هیدروشیمیایی نشان میدهد آب چشمهها جزء ردۀ آبهای محصور و کمعمق با تیپ بیکربناتۀ سدیک است، به طوری که مقدار Na و HCO3 بهترتیب 736 و 2122 میلیگرم بر لیتر میرسد. نتایج بررسی نسبتهای مختلف یونی و نمودارهای هیدروژئوشیمیایی نشان داد زیاد بودن غلظت عناصر در ترکیب آب چشمه بیشتر مربوط به تأثیر سنگهای میزبان و فرایند تعویض یونی است. در چشمههای آب گرم با غلظت زیاد HCO3, Na و عناصر فرعی As و B با مقادیر 47/1 و 7/0میلیگرم بر لیتر، به دلیل نبود سنگهای تبخیری، همچنین به دلیل حضور تودههای گرم ماگمایی در اعماق، منشأ این یونها میتواند به جدایش آنها از سیستم ماگمایی و هیدروترمال مرتبط باشد. آبهای حرارتی منطقۀ مطالعهشده بر اساس دیاگرام Na-K-Mg جزء آبهای نابالغ است، بنابراین نتایج حاصل از ژئوترمومترهای کاتیونی با دمای مخزن بین 22 تا 667 درجۀ سانتیگراد نمیتواند از صحت و دقت کافی برخوردار باشد. بر اساس نتایج حاصل از ژئوترمومترهای سیلیس، شاخص اشباعیت کانیهای کوارتز و کلسدونی و مدل اختلاط آنتالپی سیلیس دمای مخزن خیلی زیاد نیست و حدود 70 تا 78 درجۀ سانتیگراد برآورد میشود. | ||
کلیدواژهها | ||
آب گرم؛ تعویض یونی؛ ژئوترمومتر؛ ماکو؛ هیدروژئوشیمی | ||
مراجع | ||
[1]. Modabberi S, Jahromi Yekta SS. Environmental geochemistry and sources of potentially toxic elements in thermal springs in the Sabalan volcanic field, NW Iran. Environ Earth Sci. 2014; 71(6):2821–2835.
[2]. Karimi S, Mohammadi Z, Nozar Samani N. Geothermometry and circulation depth of groundwater in Semnan thermal springs, Northern Iran. Environ Earth Sci. 2017; 76(19):659-663.
[3]. Rezaei A, Javadi H, Rezaeian M, Barani S. Heating mechanism of the Abgarm–Avaj geothermal system observed with hydrochemistry, geothermometry, and stable isotopes of thermal spring waters, Iran. Environmental Earth Sciences. 2018; 77(18):1-18.
[4]. Florentino AKM, Esteller MV, Domínguez MVE, Expósito JL, Paredes J. Hydrogeochemistry, isotopes and geothermometry of Ixtapan de la Sal – Tonatico hot springs, Mexico. Environmental Earth Sciences. 2019; 78(20):1-27.
[5]. Trabelsi S, Makn J, Bouri S, Ben Dhia H. Hydrochemistry of thermal waters in Northeast Tunisia: water–rock interactions and hydrologic mixing, Arab J Geosci. 2015; 8(3): 10.1007/s12517-014-1293-2.
[6]. Fournier RO. Chemical geothermometers and mixing models for geothermal systems. Geothermics. 1977; 5(4):41–50.
[7]. Fournier RO. A revised equation for Na-Kgeothermometer. Geoth. Res. Council, Transactions. 1979; 3: 221–224.
[8]. Giggenbach WF. Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochimica et Cosmochimica Acta. 1988; 52: 2749–2765.
[9]. Kharaka YK, Mariner RH. Chemical geothermometers and their application to formation waters from sedimentary basins. In: Naeser ND, McCulloh TH (eds) Thermal history of sedimentary basins. Springer, New York. 1989; 99–117.
[10]. Alacali M. Hydrogeochemical investigation of geothermal springs in Erzurum, East Anatolia (Turkey), Environmental Earth Sciences. 2018; 77(24):802.
[11]. Ellis AJ, Mahon, WAJ. Chemistry and Geothermal Systems. Academic Press.1977.
[12]. Giggenbach WF, Gonfiantini R, Jangi BL, Truesdell AH. Isotopic and chemical composition of Parbati valley geothermal discharges, NW-Himalaya, India. Geothermics. 1983; 12(2): 199–222.
[13]. Vengosh A, Helvacı C, Karamanderesi IH. Geochemical constraints for the origin of thermal waters from western Turkey. Applied Geochemistry. 2002; 17(3): 163–183.
[14]. Afsin M, Allen DM, Kirste D, Durukan UG, Gurel A, Oruc O. Mixing processes in hydrothermal spring systems and implications for interpreting geochemical data: a case study in the Cappadocia region of Turkey. Hydrogeology Journal. 2014; 22(1): 7–23.
[15]. Guo Q, Liu M, Li J, Zhou C. Geochemical Genesis of Arsenic in the Geothermal Waters from the Rehai Hydrothermal System, Southwestern China. Procedia Earth Planet Sci. 2017; 17:49-52.
[16]. Alçiçek H, Bülbül A, Yavuzer İ, Alçiçek MC. Hydrogeochemical and isotopic assessment and geothermometry applications in relation to the Karahayit Geothermal Field (Denizli Basin, SW Anatolia, Turkey). Hydrogeology Journal. 2019; doi.org/10.1007/s10040-019-01927-y.
[17]. Zhao R, Shan X, Wu C, Yi J, Hao G, Wang P. Formation and evolution of the Changbaishan volcanic geothermal system in a convergent plate boundary back-arc region constrained by boron isotope and gas data. J Hydrol. 2019; 569:188-202.
[18]. Jácome-Paz MP, Pérez-Zárate D, Prol-Ledesma RM, et al. Two new geothermal prospects in the Mexican Volcanic Belt: La Escalera and Agua Caliente – Tzitzio geothermal springs, Michoacán, México. Geothermics. 2019; 80:40-55.
[19]. Wang, Y., Gu, H., Li, D. et al. Hydrochemical characteristics and genesis analysis of geothermal fluid in the Zhaxikang geothermal field in County, southern Tibet. Environ Earth Sci. 80: doi.org/10.1007/s12665-021-09577-8.
[20]. Sharif R, Moore F, Mohammadi Z, Keshavarzi B. Estimation of deepwater temperature and hydrogeochemistry of springs in the Takab geothermal field, West Azerbaijan, Iran. Environ Monit Assess. 2016; 188(1):1-20.
[21]. Noorollahi Y, Jamaledini MR, Ghazban F. Geothermal Potential Areas in Iran. Renewable Energy Organization of Iran (SUNA).1998; 175 p. [Persian].
[22]. Karimi H, Moore F. The source and heating mechanism for the Ahram, Mirahmad and Garu thermal springs, Zagros Mountains, Iran. Geothermics. 2008; 37(1): 84-100.
[23]. Shakeri A, Moore F, Kompani-Zare M. Geochemistry of the thermal springs of Mount Taftan, southeastern Iran. J Volcanol Geotherm Res. 2008;178(4):829-836.
[24]. Mohammadi Z, Bagheri R, Jahanshahi R. Hydrogeochemistry and geothermometry of Changal thermal springs, Zagros region, Iran. Geothermics. 2010; 39(3): 242-249.
[25]. Mohammadzadeh H, Zakeri M. Geofluids Assessment of the Ayub and Shafa Hot Springs in Kopet-Dagh Zone (NE Iran): An Isotopic Geochemistry Approach. Geofluids. 2017; 1-11.
[26]. Rafighdoust Y, Eckstein Y, Moussavi Harami R, Mahmudy Gharaie MH, Griffith E M, Mahboubi A. Isotopic analysis, hydrogeochemistry and geothermometry of Tang-Bijar oilfield springs, Zagros region, Iran. Geothermics. 2015; 55: 24-30.
[27]. Rezaei A, Rezaeian M, Porkhial S. The hydrogeochemistry and geothermometry of the thermal waters in the Mouil Graben, Sabalan volcano, NW Iran, Geothermics. 2019; 78: 9–27.
[28]. Ebrahimi D, Nouraliee J, Dashti A. Inspecting geothermal prospects in an integrated approach within the West Azarbaijan Province of Iran. Geothermics. 2019; 77:224-235.
[29]. Aghanabati A. Geology of Iran. Geological Survey of Iran Publications. 2006. [Persian].
[30]. Abasnejad H, Alipour S, Kohen D. Evaluation and Comparison of the Anomaly of Fluoride in Rock, Soil and Water Bodies in the Northern Axis of Zangmar River, North of West Azarbaijan, Northwest of Iran. Iranian journal of Ecohydrology. 2019; 6(4): 969-982. [Persian].
[31]. Asghari Moghaddam A, Fijani E. Distribution of fluoride in groundwater of Maku area, northwest of Iran. Environ Geol. 2008; 56(2):281–287.
[32]. Aghazadeh N, Chitsazan M, Golestan Y. Hydrochemistry and quality assessment of groundwater in the Ardabil area, Iran. Applied Water Science. 2017; 7(7): 3599-3616. | ||
آمار تعداد مشاهده مقاله: 385 تعداد دریافت فایل اصل مقاله: 298 |