- Ahani, A., & Mousavi Nadoushani, S. S. (2014). Regionalization of Aras Watershed by SOFM. Iran-Water Resources Research, 10(3), 88-98. (In Persian).
- Ahmadi, S.H., & Sedghamiz, A. (2007) Geostatistical Analysis of Spatial and Temporal Variations of Groundwater Level. Environmental Monitoring and Assessment, 129, 277-294. http://dx.doi.org/10.1007/s10661-006-9361-z
- Alfonso, L., Lobbrecht, A., & Price, R. (2010). Optimization of water level monitoring network in polder systems using information theory. Water Resources Research, 46(1), 1-13. https://doi.org/10.1029/2009WR008953.
- Alfonso, L., He, L., Lobbrecht, A., & Price, R. (2013). Information theory applied to evaluate the discharge monitoring network of the Magdalena River. Journal of Hydroinformatics, 15(1), 211-228. https://doi.org/10.2166/hydro.2012.066.
- Alilou, H., Moghaddam Nia, A., Keshtkar, H., Han, D., & Bray, M. (2018). A cost-effective and efficient framework to determine water quality monitoring network locations. Science of the Total Environment, 624, 283-293. https://doi.org/10.1016/j.scitotenv.2017.12.121.
- Alizadeh, Z., Yazdi, J., & Moridi, A. (2018). Development of an Entropy Method for Groundwater Quality Monitoring Network Design. Environmental Processes, 5(4), 769-788. https://doi.org/10.1007/s40710-018-0335-2.
- Boroumand, A., Rajaee, T., & Masoumi, F. (2018). Semivariance analysis and transinformation entropy for optimal redesigning of nutrients monitoring network in San Francisco bay. Marine Pollution Bulletin, 129(2), 689-694. https://doi.org/10.1016/j.marpolbul.2017.10.057.
- Chang, C. L., & Lin, Y. T. (2014). A water quality monitoring network design using fuzzy theory and multiple criteria analysis. Environmental Monitoring and Assessment, 186(10), 6459-6469. https://doi.org/10.1007/s10661-014-3867-6.
- Daughney, C. J., Raiber, M., Moreau-Fournier, M., Morgenstern, U., & van der Raaij, R. (2012). Use of hierarchical cluster analysis to assess the representativeness of a baseline groundwater quality monitoring network: Comparison of New Zealand’s national and regional groundwater monitoring programs. Hydrogeology Journal, 20(1), 185-200. https://doi.org/10.1007/s10040-011-0786-2.
- Du, X., Shao, F., Wu, S., Zhang, H., & Xu, S. (2017). Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Environmental Monitoring and Assessment, 189(7). https://doi.org/10.1007/s10661-017-6035-y.
- Esquivel, J. M., Morales, G. P., & Esteller, M. V. (2015). Groundwater Monitoring Network Design Using GIS and Multicriteria Analysis. Water Resources Management, 29(9), 3175-3194. https://doi.org/10.1007/s11269-015-0989-8.
- Hosseinimarandi, H., Mahdavi, M., Ahmadi, H., Motamedvaziri, B., & Adelpur, A. (2014). Assessment of Groundwater Quality Monitoring Network Using Cluster Analysis, Shib-Kuh Plain, Shur Watershed, Iran. Journal of Water Resource and Protection, 06(06), 618-624. https://doi.org/10.4236/jwarp.2014.66060.
- Janatrostami, S., & Salahi, A. (2020). Design of the optimal groundwater quality monitoring network using a genetic algorithm based optimization approach. Environmental Sciences, 18(2), 19-40. (In Persian).
- Karamouz, M., Ahmadi, A., & Akhbari, M. (2020). Groundwater Hydrology: Engineering, Planning, and Management (2nd ed.). CRC Press. https://doi.org/10.1201/9780429265693.
- Komasi, M., & Goudarzi, H. (2021). Multi-objective optimization of groundwater monitoring network using a probability Pareto genetic algorithm and entropy method (case study: Silakhor plain). Journal of Hydroinformatics, 23(1), 136-150. https://doi.org/10.2166/hydro.2020.061.
- Li, H., Wang, D., Singh, V. P., Wang, Y., Wu, J., & Wu, J. (2021). Developing an entropy and copula-based approach for precipitation monitoring network expansion. Journal of Hydrology, 598(November 2020), 126366. https://doi.org/10.1016/j.jhydrol.2021.126366.
- Masoumi, F., & Kerachian, R. (2008). Optimal groundwater monitoring network design using the entropy theory. of Water and Wastewater, 65, 2-12. (In Persian).
- Mogheir, Y., Singh, V. P., & De Lima, J. L. M. P. (2006). Spatial assessment and redesign of a groundwater quality monitoring network using entropy theory, Gaza Strip, Palestine. Hydrogeology Journal, 14(5), 700-712.
- Rajaee, T., Masoumi, F., & Ahmadi Siavoshani, F. S. (2021). Optimal location of water quality monitoring stations in river systems by discrete transinformation entropy. Iranian Journal of Irrigation & Drainage, 15(2), 295-306. (In Persian).
- Rezaei, F., Safavi, H. R., & Ahmadi, A. (2013). Groundwater vulnerability assessment using fuzzy logic: a case study in the Zayandehrood aquifers, Environmental management, 51(1), 267-277.
- Shannon, C. E. (1948). A mathematical theory of communication. The Bell system technical journal, 27(3), 379-423.
- Singh, V. P. (1997). The use of entropy in hydrology and water resources. Hydrological processes, 11(6), 587-626.
- Taheri, K., Missimer, T. M., Amini, V., Bahrami, J., & Omidipour, R. (2020). A GIS-expert-based approach for groundwater quality monitoring network design in an alluvial aquifer: a case study and a practical guide. Environmental Monitoring and Assessment, 192(11). https://doi.org/10.1007/s10661-020-08646-y.
- Xiong, H., Wu, J., & Chen, J. (2006). K-means clustering versus validation measures, 39(2), 779. https://doi.org/10.1145/1150402.1150503.
|