- Abdi, A., Hassanzadeh, Y., & Ouarda, T. B. (2017). Regional frequency analysis using Growing Neural Gas network. Journal of Hydrology, 550, 92-102.
- Adib, A., Kashani, A., & Ashrafi, S. M. (2021). Merge L-Moment Method, Regional Frequency Analysis and SDI for Monitoring and Zoning Map of Short-Term and Long-Term Hydrologic Droughts in the Khuzestan Province of Iran. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45(4), 2681-2694.
- Alemaw, B. F., & Chaoka, R. T. (2016). Regionalization of Rainfall Intensity-Duration-Frequency (IDF) Curves in Botswana. Journal of Water Resource and Protection, 8(12), 1128.
- Angelopoulou, A., Psarrou, A., Garcia-Rodriguez, J., Orts-Escolano, S., Azorin-Lopez, J., & Revett, K. (2015). 3D reconstruction of medical images from slices automatically landmarked with growing neural models. Neurocomputing, 150, 16-25.
- Ariff, N. M., Jemain, A. A., & Bakar, M. A. A. (2016). Regionalization of IDF curves with L-moments for storm events. International Journal of Mathematical and Computational Sciences, 10(5), 217-223.
- Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-theory and Methods, 3(1), 1-27.
- Carlevarino, A., Martinotti, R., Metta, G., & Sandini, G. (2000, July). An incremental growing neural network and its application to robot control. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, 5, 323-328). IEEE.
- Chaubey, I., Haan, C. T., Grunwald, S., & Salisbury, J. M. (1999). Uncertainty in the model parameters due to spatial variability of rainfall. Journal of Hydrology, 220(1-2), 48-61.
- Chou, C. H., Su, M. C., & Lai, E. (2004). A new cluster validity measure and its application to image compression. Pattern Analysis and Applications, 7(2), 205-220.
- Cselényi, Z. (2005). Mapping the dimensionality, density and topology of data: The growing adaptive neural gas. computer methods and programs in biomedicine, 78(2), 141-156.
- de Oliveira Martins, L., Silva, A. C., De Paiva, A. C., & Gattass, M. (2009). Detection of breast masses in mammogram images using growing neural gas algorithm and Ripley’s K function. Journal of Signal Processing Systems,55(1),77-90.
- Decker, R. (2005). Market basket analysis by means of a growing neural network. The International Review of Retail, Distribution and Consumer Research, 15(2), 151-169.
- Durrans, S. R., & Kirby, J. T. (2004). Regionalization of extreme precipitation estimates for the Alabama rainfall atlas. Journal of Hydrology, 295(1-4), 101-107.
- Ferrer, G. J. (2014). Creating Visual Reactive Robot Behaviors Using Growing Neural Gas. In MAICS(pp. 39-44).
- Fink, O., Zio, E., & Weidmann, U. (2015). Novelty detection by multivariate kernel density estimation and growing neural gas algorithm. Mechanical Systems and Signal Processing, 50, 427-436.
- Fišer, D., Faigl, J., & Kulich, M. (2013). Growing neural gas efficiently. Neurocomputing,104, 72-82.
- Fritzke, B. (1995). A growing neural gas network learns topologies. Advances in neural information processing systems, 7, 625-632.
- Ghadami, M., Raziei, T., Amini, M., & Modarres, R. (2020). Regionalization of drought severity–duration index across Iran. Natural Hazards, 103(3), 2813-2827.
- Goovaerts, P. (1999). Using elevation to aid the geostatistical mapping of rainfall erosivity. Catena, 34(3-4), 227-242.
- Hosking, J.R.M., & Wallis, J.R. (1993). Some statistics useful in regional frequency analysis. Water resources research, 29(2), 271-281.
- Lee, S. H., & Maeng, S. J. (2003). Frequency analysis of extreme rainfall using L‐moment. Irrigation and Drainage: The journal of the International Commission on Irrigation and Drainage, 52(3), 219-230.
- Linda, O., & Manic, M. (2009, June). GNG-SVM framework-classifying large datasets with Support Vector Machines using Growing Neural Gas. In 2009 International Joint Conference on Neural Networks. (pp. 1820-1826). IEEE.
- Lisboa, P. J., Edisbury, B., & Vellido, A. (2000). Business applications of neural networks: the state-of-the-art of real-world applications(Vol. 13). World scientific.
- Martinetz, T., & Schulten, K. (1991). A" neural-gas" network learns topologies.
- Masselot, P., Chebana, F., & Ouarda, T. B. (2017). Fast and direct nonparametric procedures in the L-moment homogeneity test. Stochastic Environmental Research and Risk Assessment, 31(2), 509-522.
- Modarres, R. (2010). Regional dry spells frequency analysis by L-moment and multivariate analysis. Water resources management, 24(10), 2365-2380.
- Moreli, V., Cazorla, M., Orts-Escolano, S., & Garcia-Rodriguez, J. (2014, July). 3d maps representation using gng. In 2014 International Joint Conference on Neural Networks (IJCNN)(pp. 1482-1487). IEEE.
- Quintana-Pacheco, Y., Ruiz-Fernández, D., & Magrans-Rico, A. (2014). Growing Neural Gas approach for obtaining homogeneous maps by restricting the insertion of new nodes. Neural networks, 54, 95-102.
- Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20, 53-65.
- Soltani, S., Helfi, R., Almasi, P., & Modarres, R. (2017). Regionalization of rainfall intensity-duration-frequency using a simple scaling model. Water Resources Management, 31(13), 4253-4273.
- Zaki, S. M., & Yin, H. (2008). A semi-supervised learning algorithm for growing neural gas in face recognition. Journal of Mathematical Modelling and Algorithms, 7(4), 425-435.
|