- Baranya, S., & Jozsa, J. (2007). Numerical and laboratory investigation of the hydrodynamic complexity of a river confluence. Periodica Polytechnica Civil Engineering, 51, 3-8.
- Bayle, P. M., Beuzen, T., Blenkinsopp, C. E., Baldock, T. E., & Turner, I. L. (2021). A new approach for scaling beach profile evolution and sediment transport rates in distorted laboratory models. Coastal Engineering, 163,
- (1999). MIKE 21 curvilinear. April 1999, DHI Water and Environment, Copenhagen, Denmark, User Guide and Scientific Documentation
- Erpicum, S., Tullis, B. P., Lodomez, M., Archambeau, P., Dewals, B. J., & Pirotton, M. (2016). Scale effects in physical piano key weirs models. Journal of Hydraulic Research, 54, 692-698.
- Fang, H., He, G., Liu, J., & Chen, M. (2008). 3D numerical investigation of distorted scale in hydraulic physical model experiments. Journal of Coastal Research, 41-54.
- Fischer, H. B., & Holley, E. (1971). Analysis of the use of distorted hydraulic models for dispersion studies. Water Resources Research, 7, 46-51.
- Gabl, R., Gems, B., Plörer, M., Klar, R., Gschnitzer, T., Achleitner, S., & Aufleger, M. (2014). Numerical simulations in hydraulic engineering. Computational engineering.
- Gabriele, H., Stefan, H., Schneider, J., & Olsen, N. R. B. (2014). Numerical analysis of synthetic granulate deposition in a physical model study. International Journal of Sediment Research, 29, 110-117.
- Haque, M. M., Klaassen, G. J., & Enggrob, H. G. (2006). Scale effects in movable bed models of rivers with dominant suspended load. World Environmental and Water Resource Congress 2006: Examining the Confluence of Environmental and Water Concerns, 2006. 1-13.
- Heller, V. (2011). Scale effects in physical hydraulic engineering models. Journal of Hydraulic Research, 49, 293-306.
- Heller, V. (2017). Self-similarity and Reynolds number invariance in Froude modelling. Journal of Hydraulic Research, 55, 293-309.
- Lai, Y. G. (2010). Two-dimensional depth-averaged flow modeling with an unstructured hybrid mesh. Journal of Hydraulic Engineering, 136, 12-23.
- Link, O., Henríquez, S., & Ettmer, B. (2019). Physical scale modelling of scour around bridge piers. Journal of Hydraulic Research, 57, 227-237.
- Lu, J., Liao, X., & Zhao, G. (2013). Experimental study on effects of geometric distortion upon suspended sediments in bending channels. Sedimentary Geology, 294, 27-36.
- Mcclimans, T., & Gjerp, S. (1978). Numerical study of distortion in a Froude model. Coastal Engineering 1978.
- Mcclimans, T., & Saegrov, S. (1982). River plume studies in distorted Froude models. Journal of Hydraulic Research, 20, 15-27.
- Patra, K. C., & Kar, S. K. (2000). Flow interaction of meandering river with floodplains. Journal of Hydraulic Engineering, 126, 593-604.
- Patra, K. C., Kar, S. K., & Bhattacharya, A. K. (2004). Flow and velocity distribution in meandering compound channels. Journal of Hydraulic Engineering, 130, 398-411.
- Savage, B. M., Crookston, B. M., & Paxson, G. S. (2016). Physical and numerical modeling of large headwater ratios for a 15 labyrinth spillway. Journal of Hydraulic Engineering, 142,
- Torres, C., Borman, D., Sleigh, A., & Neeve, D. (2018). Investigating scale effects of a hydraulic physical model with 3D CFD. Smart Dams and Reservoirs: Proceedings of the 20th Biennial Conference of the British Dam Society, held at Swansea University from 13th–15th September 2018.
- Tullis, B., Crookston, B., & Young, N. (2020). Scale effects in free-flow nonlinear weir head-discharge relationships. Journal of Hydraulic Engineering, 146,
- Tullis, B. (2018). Size-Scale Effects of Labyrinth Weir Hydraulics. Daniel Bung, Blake Tullis, 7th IAHR International Symposium on Hydraulic Structures, Aachen, Germany, 15-18 May.
- Waldron, R. L. (2008). Physical modeling of flow and sediment transport using distorted scale modeling.
- Wang, H., & Chanson, H. (2016). Self-similarity and scale effects in physical modelling of hydraulic jump roller dynamics, air entrainment and turbulent scales. Environmental Fluid Mechanics, 16, 1087-1110.
- Zarrati, A., Tamai, N., & Jin, Y. (2005). Mathematical modeling of meandering channels with a generalized depth averaged model. Journal of Hydraulic Engineering, 131, 467-475.
- Zhao, G., Visser, P. J., Lu, J., & Vrijling, J. K. (2013). Similarity of the velocity profile in geometrically distorted flow model. Flow Measurement and Instrumentation, 32, 107-110.
|