- Abdullah, S. L. S., Hambali, H., & Jamil, N. (2012). Segmentation of natural images using an improved thresholding-based technique. Procedia Engineering, 41(Iris), 938-944. https://doi.org/10.1016/j.proeng.2012.07.266
- Al-amri, S. S., Kalyankar, N. V., & D., K. S. (2010). Image Segmentation by Using Threshold Techniques, 2. http://arxiv.org/abs/1005.4020
- An, J., Li, W., Li, M., Cui, S., & Yue, H. (2019). Identification and classification of maize drought stress using deep convolutional neural network. Symmetry, 11(2), 1-14. https://doi.org/10.3390/sym11020256
- Aureliano Netto, A. F., Nogueira Martins, R., Aquino de Souza, G. S., Araújo, G. D. M., Hatum de Almeida, S. L., & Agnolette Capelini, V. (2018). Segmentation of rgb images using different vegetation indices and thresholding methods. Nativa, 6(4), 389. https://doi.org/10.31413/nativa.v6i4.5405
- Coy, A., Rankine, D., Taylor, M., Nielsen, D. C., & Cohen, J. (2016). Increasing the accuracy and automation of fractional vegetation cover estimation from digital photographs. Remote Sensing, 8(7), 21-25. https://doi.org/10.3390/rs8070474
- Ghosal, S., Blystone, D., Singh, A. K., Ganapathysubramanian, B., Singh, A., & Sarkar, S. (2018). An explainable deep machine vision framework for plant stress phenotyping. Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4613-4618. https://doi.org/10.1073/pnas.1716999115
- Kamali, H., Zand-Parsa, S., & Zare, M. (2017). Estimation of canopy cover, leaf area index and leaf nitrogen content in sugar beet using digital photography. Journal of Sugar beet, 32(2), 123-133. https://doi.org/10.22092/jsb.2016.107217 (In Persian)
- Khanna, R., Schmid, L., Walter, A., Nieto, J., Siegwart, R., & Liebisch, F. (2019). A spatio temporal spectral framework for plant stress phenotyping. Plant Methods, 15(1), 1-18. https://doi.org/10.1186/s13007-019-0398-8
- Kim, S.-H., Ryu, C.-S., Kang, Y.-S., & Min, Y.-B. (2015). Improved plant image segmentation method using vegetation indices and automatic thresholds. Journal of Agriculture & Life Science, 49(5), 333-341. https://doi.org/10.14397/jals.2015.49.5.333
- Kisalaei, A., Golmohammadzadeh, F., Rasouli Sharabiani, V., & Golmohammadi, A. (2014). Applicaton of image processing in precision agriculture. 3rd National Conference On Organic and Conventional Agriculture. (In Persian)
- Latifoltojar, S., Jafari, A., Nassiri, S. M., & Sharifi, H. (2014). Estimation of sugar beet yield based on crop canopy cover using image processing patterns. Journal of Agricultural Machinery, 4(2), 275-284. (In Persian)
- Lee, K.-J., & Lee, B.-W. (2011). Estimating canopy cover from color digital camera image of rice field. Journal of Crop Science and Biotechnology, 14(2), 151-155. https://doi.org/10.1007/s12892-011-0029-z
- Meyer, G. E., & Neto, J. C. (2008). Verification of color vegetation indices for automated crop imaging applications. Computers and Electronics in Agriculture, 63(2), 282-293. https://doi.org/10.1016/j.compag.2008.03.009
- Moosavi, S. G. R., Ramazani, S. H. R., Hemayati, S. S., & Gholizade, H. (2017). Effect of drought stress on root yield and some morpho-physiological traits in different genotypes of sugar beet (Beta vulgaris). Journal of Crop Science and Biotechnology, 20(3), 167-174. https://doi.org/10.1007/s12892-017-0009-0
- Noda, K., Ezaki, N., Takizawa, H., Mizuno, S., & Yamamoto, S. (2006). Detection of plant saplessness with image processing. International Joint Conference SICE-ICASE. p. 4856-4860.
- Orak, H., Abdanan Mehdizeh, S., & Sadi, M. (2018). Predicting sugar beet performance by online image processing. Journal of Sugar beet, 34(2), 181-191. https://doi.org/10.22092/jsb.2019.120670.1178 (In Persian)
- Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transaction on Systems, Man and Cybernetics, 20(1), 62-66.
- Poonguzhali, R., & Vijayabhanu, A. (2019). Crop condition assessment using machine learning. International Journal of Recent Technology and Engineering, 7(6), 897-900.
- Ridler, T. W., & Calvard, S. (1978). Picture thresholding using iterative selective method. IEEE Transactions on Systems, Man and Cybernetics, smc-8(8), 630-632.
- Riehle, D., Reiser, D., & Griepentrog, H. W. (2020). Robust index-based semantic plant/background segmentation for RGB-images. Computers and Electronics in Agriculture, 169(December 2019), 105201. https://doi.org/10.1016/j.compag.2019.105201
- Sadeghzadeh Hemayati, S., Fathollah Taleghani, D., & Fasahat, P. (2017). Effects of drought stress on quantitative and qualitative characteristics, canopy ground cover and wilting score of sugar beet genotypes. Environmental Stresses in Crop Sciences, 10(3), 363-375. (In Persian)
- Saxena, L., & Armstrong, L. (2014). A Survey of image processing techniques for agriculture. Proceedings of Asian Federation for Information Technology in Agriculture, 401-413. https://doi.org/10.5120/20052-1983
- Steduto, P., Hsiao, T. C., Fereres, E., & Raes, D. (2012). Crop yield response to water. FAO Irrigation and Drainage Paper No.66, October 2012, 505.
- Story, D., & Kacira, M. (2015). Design and implementation of a computer vision-guided greenhouse crop diagnostics system. Machine Vision and Applications, 26(4), 495-506. https://doi.org/10.1007/s00138-015-0670-5
- Thailambal, G., & Yogeshwari, M. (2020). Automatic segmentation of plant leaf disease using improved fast Fuzzy C-Means clustering and adaptive Otsu thresholding. European Journal of Molecular and Clinical Medicine, 7(3), 5447-5462. https://ejmcm.com/article_5513.html
- Wenhua Mao, Yiming Wang, & Yueqing Wang. (2003, November 15). Real-time Detection of Between-row Weeds Using Machine Vision. https://doi.org/10.13031/2013.15381
- Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the American Society of Agricultural Engineers, 38(1), 259-269. https://doi.org/10.13031/2013.27838
- Yu, Y., Bao, Y., Wang, J., Chu, H., Zhao, N., He, Y., & Liu, Y. (2021). Crop row segmentation and detection in paddy fields based on treble-classification otsu and double-dimensional clustering method. Remote Sensing, 13(5), 1-25. https://doi.org/10.3390/rs13050901
- Zack, G. W., Rogers, E., & Latt, S. A. (1977). Automatic measurement of sister chromatid exchange frequency. The Journal of Histochemistry and Cytochemistry, 25(7), 741-753.
|