تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,097,864 |
تعداد دریافت فایل اصل مقاله | 97,205,502 |
Arbuscular mycorrhizal fungi prevent mercury toxicity in Lactuca sativa (L.) seed germination | ||
Pollution | ||
دوره 8، شماره 3، مرداد 2022، صفحه 1014-1025 اصل مقاله (872.29 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2022.337840.1338 | ||
نویسندگان | ||
Sebastián Escobar-Vargas1، 2؛ Carlos Fernando Vargas Aguirre1؛ Fredy Arvey Rivera Páez* 1 | ||
1Grupo de Investigación GEBIOME, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Calle 65 No. 26-10 Apartado Aéreo 275, Manizales, Colombia | ||
2rupo de Investigación en Microbiología y Biotecnología Agroindustrial (GIMIBAG), Facultad de Ciencias de la Salud, Universidad Católica de Manizales, Carrera 23 No. 60 – 63. Postal code: 170002, Manizales, Colombia | ||
چکیده | ||
Mercury pollution is an issue of global concern. In Colombia, the use of contaminated water for food crop irrigation and artisanal mining contributes to mercury pollution in soil, affecting food production and restoration of disturbed areas. Mycorrhizal fungi are symbionts that provide benefits to plants including resistance to heavy metals, but fungal effects on germination remain to be fully described. This study tested the effect of mercury and mycorrhizal fungi on Lactuca sativa seed germination. A 2x5 completely randomized factorial experiment was developed to assess the effect of five HgCl2 polluted treatments, two mycorrhizal treatments (i.e., with inoculum, without inoculum), and the interaction of both factors on seed germination, seedling root colonization, pH, and final water content. In samples with no mercury pollution, mycorrhizal fungi had an inhibitory effect on seed germination. Likewise, the effect of mercury on seed germination is significantly inhibitory. However, pots inoculated with arbuscular mycorrhizal fungi showed constant germination probabilities, independently of mercury concentration. According to the best model determined for the data, a key step in the mitigation of mercury toxicity in seed germination is to prevent substrate pH changes. The environmental conditions of the experiment contributed to densely activate populated biomass of inoculum, which promoted root invasion from various points. Overall, the presence of mycorrhizal fungi in seedbeds could lead to a reduced number of plant individuals. However, the use of fungal inoculum in polluted environments, highly contributes to plant establishment, which is relevant in further vegetable cultivations growing in soil polluted areas. | ||
کلیدواژهها | ||
Lettuce؛ post-germination؛ pollution؛ symbiosis | ||
مراجع | ||
Aasma, P., Muhammad, H. S., Muhammad, K., Muhammad, Z.H., Jen-Tsung, C., Zaffar, M., Muhammad, S.R., Amara, H., Ghulam, H., Muhammad, T.J. and Muhammad, A. (2020). Effect of citric acid on growth, ecophysiology, chloroplast ultrastructure, and phytoremediation potential of jute (Corchorus capsularis L.) seedlings exposed to copper stress. Biomolecules, 10(4): 592, 1–18.
Cargnelutti, D., Tabaldi, L.A., Spanevello, R.M., de Oliveira Jucoski, G., Battisti, V., Redin, M., Blanco Linares, C.E., Dressler, V.L., de Moraes Flores, É.M., Teixeira Nicoloso, F., Morsch, V.M. and Chitolina Schetinger, M.R. (2006). Mercury toxicity induces oxidative stress in growing cucumber seedlings. Chemosphere, 65, 999–1006.
Chitarra, W., Pagliarani, C., Maserti, B., Lumini, E., Siciliano, I., Cascone, P., Schubert, A., Gambino, G., Balestrini, R. and Guerrieri, E. (2016). Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol., 171, 1009–1023.
Cozzolino, V., De Martino, A., Nebbioso, A., Di Meo, V., Salluzzo, A. and Piccolo, A. (2016). Plant tolerance to mercury in a contaminated soil is enhanced by the combined effects of humic matter addition and inoculation with arbuscular mycorrhizal fungi. Environ. Sci. Pollut. Res., 23, 11312–11322.
Dag, O., Dolgun, A. and Konar, N.M. (2018). Onewaytests: An R Package for One-Way Tests in Independent Groups Designs. R J., 10, 175–199.
Dias, A.S., Pereira, I.P. and Dias, L.S. (2016). Investigating and modeling the combined effects of pH and osmotic pressure on seed germination for use in phytoactivity and allelopathic research. Plant Biosyst. - An Int. J. Deal. with all Asp. Plant Biol., 151(4), 657–664.
Ferreira, L.A. and de Oliveira, E.C. (2021). "Chapter 2. Arbuscular Mycorrhizal Fungi and remediation potential of soils contaminated by potentially toxic elements" in Mycoremediation and Environmental Sustainability, volume 3, eds. Prasad, R., Nayak, S.C., Kharwar, R.N., Dubey, N.K. (Springer), 36–89
Fox, J. and Weisberg, S. (2019). An R Companion to Applied Regression, Third. ed. Sage, Thousand Oaks, CA.
García-Sánchez, M., Palma, J.M., Ocampo, J.A., García-Romera, I. and Aranda, E. (2014). Arbuscular mycorrhizal fungi alleviate oxidative stress induced by ADOR and enhance antioxidant responses of tomato plants. J. Plant Physiol., 171, 421–428.
Gerbersdorf, S.U., Hollert, H., Brinkmann, M., Wieprecht, S., Schüttrumpf, H. and Manz, W. (2011). Anthropogenic pollutants affect ecosystem services of freshwater sediments : the need for a “ triad plus x ” approach. J Soil Sediments, 11, 1099–1114.
Giovannetti, M. and Mosse, B. (1980). An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol., 84, 489–500.
Gutjahr, C. and Parniske, M. (2019). Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu. Rev. Cell. Dev. Biol., 29, 593–619.
Hildebrandt, U., Regvar, M. and Bothe, H. (2007). Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry, 68, 139–146.
Khan, S., Cao, Q., Zheng, Y.M., Huang, Y.Z. and Zhu, Y.G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing , China. Environ. Pollut., 152, 686–692.
Konietschke, F., Placzek, M., Schaarschmidt, F. and Hothorn, L.A. (2015). nparcomp: An R Software Package for Nonparametric Multiple Comparisons and Simultaneous Confidence Intervals. J. Stat. Softw., 64, 1–17.
Leudo, A. M., Cruz, Y., Montoya-Ruiz, C., Delgado, M. D. P. and Saldarriaga, J. F. (2020). Mercury phytoremediation with Lolium perenne-Mycorrhizae in contaminated soils. Sustainability, 12(9), 3795.
Lomonte, C., Sgherri, C., Baker, A.J.M., Kolev, S.D. and Navari-Izzo, F. (2010). Antioxidative response of Atriplex codonocarpa to mercury. Environ. Exp. Bot., 69, 9–16.
Luginbuehl, L.H., Menard, G.N., Kurup, S., Van Erp, H., Radhakrishnan, G. V., Breakspear, A., Oldroyd, G.E.D. and Eastmond, P.J. (2017). Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 356, 1175–1178.
Maighal, M., Salem, M., Kohler, J. and Rillig, M.C. (2016). Arbuscular mycorrhizal fungi negatively affect soil seed bank viability. Ecol. Evol., 6, 7683–7689.
Manikandan, R., Sahi, S. V. and Venkatachalam, P. (2015). Impact assessment of mercury accumulation and biochemical and molecular response of Mentha arvensis : A potential hyperaccumulator Plant. Sci. World J., 2015, 715217, 1-10.
Marrugo-Negrete, J., Benítez, L.N., Olivero-Verbel, J., Lans, E. and Vázquez-Gutiérrez, F. (2010). Spatial and seasonal mercury distribution in the Ayapel Marsh , Mojana region, Colombia. Int. J. Environ. Health Res., 20, 451–459.
Marrugo-Negrete, J., Pinedo-Hernández, J. and Díez, S. (2015). Geochemistry of mercury in tropical swamps impacted by gold mining. Chemosphere, 134, 44–51.
Miranda, D., Carranza, C., Rojas, C.A., Jerez, C.M., Fischer, G. and Zurita, J. (2008). Acumulación de metales pesados en suelo y plantas de cuatro cultivos hortícolas , regados con agua del río Bogotá. Rev. Colomb. Ciencias Hortícolas, 2, 180–191.
Pallmann, P. and Hothorn, L.A. (2016). Boxplots for grouped and clustered data in toxicology. Arch. Toxicol., 90, 1631–1638.
Patra, M. and Sharma, A. (2000). Mercury toxicity in plants. Bot. Rev., 66, 379–422.
Pepperman, A.B., Bradow, J.M. (1988). Strigol analogs as germination regulators in weed and crop seeds. Weed Sci., 36, 719–725.
Perner, H., Schwarz, D., Bruns, C., Mäder, P. and George, E. (2007). Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza, 17, 469–474.
Phillips, J.M. and Hayman, D.S. (1970). Improved procedures for clearing and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Brit. Mycol. Soc., 55, 158–161.
Pinedo-Hernández, J., Marrugo-Negrete, J. and Díez, S. (2015). Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. Chemosphere, 119, 1289–1295.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & Team, R. C. (2007). Linear and nonlinear mixed effects models. R package version, 3(57), 1-89.
Redecker, D., Schüßler, A., Stockinger, H., Stürmer, S.L., Morton, J.B. and Walker, C. (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza, 23, 515–531.
Ruyter-Spira, C., Al-Babili, S., Van-der-Krol, S. and Bouwmeester, H. (2012). The biology of strigolactones. Trends Plant Sci., 18, 72–83.
Sánchez-Ramírez, S., Wilson, A.W. and Ryberg, M. (2017). Overview of phylogenetic approaches to mycorrhizal biogeography, diversity and evolution, in Biogeography of Mycorrhizal Symbiosis, Tedersoo, L. (Ed.), 1–38.
Schüßler, A., Schwarzott, D. and Walker, C. (2001). A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res., 105, 1413–1421.
Smith, S.E. and Read, D. (2008). Mycorrhizal Symbiosis, Elsevier. https://doi.org/10.1017/CBO9781107415324.004.
Tiodar, E.D.; Vacar, C.L. and Podar, D. (2021). Phytoremediation and microorganisms-assisted phytoremediation of mercury-contaminated soils: Challenges and Perspectives. Int. J. Environ. Res. Public Health., 18(5), 2435.
Varga, S. (2015). Effects of arbuscular mycorrhizal fungi and maternal plant sex on seed germination and early plant establishment. Am. J. Bot., 102, 358–366.
Vargas-Aguirre, C.F., Rivera-Páez, F.A. and Escobar-Vargas, S. (2018). Effect of arbuscular mycorrhizae and mercury on Lactuca sativa ( Asteraceae ) seedling morpho — histology. Environ. Exp. Bot., 156, 197–202.
Ven, A., Verlinden, M.S., Verbruggen, E. and Vicca, S. (2019). Experimental evidence that phosphorus fertilization and arbuscular mycorrhizal symbiosis can reduce the carbon cost of phosphorus uptake. Funct. Ecol., 33(11), 2215–2225.
Xie, X., Yoneyama, K. and Yoneyama, K. (2010). The Strigolactone Story. Annu. Rev. Phytopathol., 48, 93–117.
Yang, Y., Liang, Y., Han, X., Chiu, T., Ghosh, A., Chen, H. (2016). The roles of arbuscular mycorrhizal fungi ( AMF ) in phytoremediation and tree-herb interactions in Pb contaminated soil. Nat. Publ. Gr., 1–14.
Ye, M., Sun, M., Zhao, Y., Jiao, W., Xia, B., Liu, M., Feng, Y., Zhang, Z., Huang, D., Huang, R., Wan, J., Du, R., Jiang, X. and Hu, F. (2018). Targeted inactivation of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa in a soil-lettuce system by combined polyvalent bacteriophage and biochar treatment. Environ. Pollut., 241, 978–987.
Zafar Iqbql, M., Khan Siddiqui, M., Athar, M., Shafiq, M., Farooqui, Z.-U.-R. and Kabir, M. (2015). Effect of mercury on seed germination and seedling growth of mungbean (Vigna radiata (L.) Wilczek). J. Appl. Sci. Environ. Manag., 19, 191–199.
Zuur, A.F., Leno, E.N. and Elphick, C.S. (2010). A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol., 1, 3–14. | ||
آمار تعداد مشاهده مقاله: 775 تعداد دریافت فایل اصل مقاله: 559 |