تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,097,977 |
تعداد دریافت فایل اصل مقاله | 97,205,553 |
Reviewing of using Nanomaterials for Wastewater Treatment | ||
Pollution | ||
دوره 8، شماره 3، مرداد 2022، صفحه 995-1013 اصل مقاله (572.79 K) | ||
نوع مقاله: Review Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2022.337436.1329 | ||
نویسندگان | ||
Hayder Abdulkhaleq Alalwan1، 2؛ Alaa Hani Alminshid* 3؛ Malik Mustafa Mohammed4؛ Mohammed Fakhir Mohammed5، 6؛ Mohanad Hatem Shadhar7 | ||
1Department of Petrochemical Techniques, Technical Institute-Kut, Middle Technical University, Baghdad, Iraq | ||
2Kut University Collage, Al Kut, Wasit, Iraq, 52001 | ||
3Department of Chemistry - Wasit University, Kut, Wasit, Iraq | ||
4Chemical Engineering and Petroleum Industries department, Al-Mustaqbal University College, Babel,Iraq | ||
5Al-Turath University College, Baghdad, Iraq | ||
6Islamic University Centre for Scientific Research, the Islamic University, Najaf, Iraq | ||
7Department of Civil Engineering, Dijlah University College, Al-Masafi Street, Baghdad, Iraq | ||
چکیده | ||
Increasing the pollution rate of water sources is one of the most severe issues that the world faces. This issue has stimulated researchers to investigate different treatment methods such as adsorption, chemical precipitation, membrane filtration, flocculation, ion exchange, flotation, and electrochemical methods. Among them, adsorption has gained broad interest due to its ease of operation, low cost, and high efficiency. The critical factor of the successful adsorption treatment process is finding attractive adsorbents with attractive criteria such as low cost and high adsorption capacity. In the last few decades, nanotechnology has attracted much attention, and numerous nanomaterials have been synthesized for water and wastewater treatment. This work provides a quick overview of nanomaterials, which have been investigated for water remediation as adsorbent and photocatalyst. This work reviewed more than 100 articles to provide a critical review that would determine the limitation of using nanomaterials in water treatment at the commercial scale. | ||
کلیدواژهها | ||
Graphene؛ Nano-sheet؛ Nanoparticles؛ Metal oxides؛ Adsorption | ||
مراجع | ||
Afkhami, A., Saber-Tehrani, M. and Bagheri, H. (2010). Simultaneous removal of heavy-metal ions in wastewater samples using nano-alumina modified with 2, 4-dinitrophenylhydrazine. Journal of hazardous materials 181: 836-844.
Afluq, S. G., Hachim, M. F., Ibrahim, Z. K. and Alalwan, H. A. (2021). Reinforcing the mechanical properties of windshield with interlayer-polycarbonates glass composite. Journal of Engineering Science and Technology 16: 4192-4204.
Al-Furaiji, M., Kadhom, M., Kalash, K., Waisi, B. and Albayati, N. (2020). Preparation of TFC Membranes Sup-ported with Elelctrospun Nanofibers for Desalination by Forward Osmosis. Drink. Water Eng. Sci. Discuss 2020: 1-17.
Al-Furaijia, M. H., Kalasha, K. R., Kadhomb, M. A. and Alsalhyc, Q. F. (2021). Evaluation of polyethersulfone microfiltration membranes embedded with MCM-41 and SBA-15 particles for turbidity removal. DESALINATION AND WATER TREATMENT 215: 50-59.
Alalwan, H. and Alminshid, A. (2020). An in-situ DRIFTS study of acetone adsorption mechanism on TiO2 nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 229: 117990.
Alalwan, H. A. and Alminshid, A. H. (2021). CO2 Capturing Methods: Chemical Looping Combustion (CLC) as a Promising Technique. Science of The Total Environment 788: 147850.
Alalwan, H. A., Augustine, L. J., Hudson, B. G., Abeysinghe, J. P., Gillan, E. G., Mason, S. E., Grassian, V. H. and Cwiertny, D. M. (2021a). Linking Solid-State Reduction Mechanisms to Size-Dependent Reactivity of Metal Oxide Oxygen Carriers for Chemical Looping Combustion. ACS Applied Energy Materials 4: 1163-1172.
Alalwan, H. A., Mohammed, M. M., Sultan, A. J., Abbas, M. N., Ibrahim, T. A., Aljaafari, H. A. and Alminshid, A. A. (2021b). Adsorption of methyl green stain from aqueous solutions using non-conventional adsorbent media: Isothermal kinetic and thermodynamic studies. Bioresource Technology Reports 14: 100680.
Alansi, A. M., Al-Qunaibit, M., Alade, I. O., Qahtan, T. F. and Saleh, T. A. (2018). Visible-light responsive BiOBr nanoparticles loaded on reduced graphene oxide for photocatalytic degradation of dye. Journal of Molecular Liquids 253: 297-304.
Ali, I. and Aboul-Enein, H. Y. (2004). "Chiral pollutants: Distribution, toxicity and analysis by chromatography and capillary electrophoresis," John Wiley & Sons.
Alminshid, A. H., Abbas, M. N., Alalwan, H. A., Sultan, A. J. and Kadhom, M. A. (2021). Aldol condensation reaction of acetone on MgO nanoparticles surface: An in-situ drift investigation. Molecular Catalysis 501: 111333.
Álvarez-Torrellas, S., Rodríguez, A., Ovejero, G. and García, J. (2016). Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chemical Engineering Journal 283: 936-947.
Amrane, A., Assadi, A. A., Nguyen-Tri, P., Nguyen, T. A. and Rtimi, S. (2020). "Nanomaterials for Air Remediation," Elsevier.
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y. (2001). Visible-light photocatalysis in nitrogen-doped titanium oxides. science 293: 269-271.
Bazrafshan, E., Mostafapour, F. K., Hosseini, A. R., Raksh Khorshid, A. and Mahvi, A. H. (2013). Decolorisation of reactive red 120 dye by using single-walled carbon nanotubes in aqueous solutions. Journal of chemistry 2013.
Bradder, P., Ling, S. K., Wang, S. and Liu, S. (2011). Dye adsorption on layered graphite oxide. Journal of Chemical & Engineering Data 56: 138-141.
Cao, C.-Y., Cui, Z.-M., Chen, C.-Q., Song, W.-G. and Cai, W. (2010). Ceria hollow nanospheres produced by a template-free microwave-assisted hydrothermal method for heavy metal ion removal and catalysis. The Journal of Physical Chemistry C 114: 9865-9870.
Chen, H., Gao, B. and Li, H. (2015). Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide. Journal of hazardous materials 282: 201-207.
Chen, Y.-H. and Li, F.-A. (2010). Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. Journal of colloid and interface science 347: 277-281.
De France, K. J., Hoare, T. and Cranston, E. D. (2017). Review of hydrogels and aerogels containing nanocellulose. Chemistry of Materials 29: 4609-4631.
Dehghani, M. H., Yetilmezsoy, K., Salari, M., Heidarinejad, Z., Yousefi, M. and Sillanpää, M. (2020). Adsorptive removal of cobalt (II) from aqueous solutions using multi-walled carbon nanotubes and γ-alumina as novel adsorbents: Modelling and optimization based on response surface methodology and artificial neural network. Journal of Molecular Liquids 299: 112154.
Deliyanni, E., Peleka, E. and Matis, K. (2009). Modeling the sorption of metal ions from aqueous solution by iron-based adsorbents. Journal of Hazardous materials 172: 550-558.
Ding, J., Li, Q., Xu, X., Zhang, X., Su, Y., Yue, Q. and Gao, B. (2018). A wheat straw cellulose-based hydrogel for Cu (II) removal and preparation copper nanocomposite for reductive degradation of chloramphenicol. Carbohydrate polymers 190: 12-22.
Engates, K. E. and Shipley, H. J. (2011). Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environmental Science and Pollution Research 18: 386-395.
Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S. M. and Su, X. (2012). Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. Journal of colloid and interface science 368: 540-546.
Gautam, P. K., Singh, A., Misra, K., Sahoo, A. K. and Samanta, S. K. (2019). Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment. Journal of environmental management 231: 734-748.
Gautam, R. K. and Chattopadhyaya, M. C. (2016). "Nanomaterials for wastewater remediation," Butterworth-Heinemann.
Ghadim, E. E., Manouchehri, F., Soleimani, G., Hosseini, H., Kimiagar, S. and Nafisi, S. (2013). Adsorption properties of tetracycline onto graphene oxide: equilibrium, kinetic and thermodynamic studies. PLoS One 8, e79254.
Gharekhani, H., Olad, A., Mirmohseni, A. and Bybordi, A. (2017). Superabsorbent hydrogel made of NaAlg-g-poly (AA-co-AAm) and rice husk ash: Synthesis, characterization, and swelling kinetic studies. Carbohydrate polymers 168: 1-13.
Ghasemzadeh, G., Momenpour, M., Omidi, F., Hosseini, M. R., Ahani, M. and Barzegari, A. (2014). Applications of nanomaterials in water treatment and environmental remediation. Frontiers of environmental science & engineering 8: 471-482.
Grossl, P. R., Sparks, D. L. and Ainsworth, C. C. (1994). Rapid kinetics of Cu (II) adsorption/desorption on goethite. Environmental science & technology 28: 1422-1429.
Gupta, S. S. and Bhattacharyya, K. G. (2012). Adsorption of heavy metals on kaolinite and montmorillonite: a review. Physical Chemistry Chemical Physics 14: 6698-6723.
Hao, L., Song, H., Zhang, L., Wan, X., Tang, Y. and Lv, Y. (2012). SiO2/graphene composite for highly selective adsorption of Pb (II) ion. Journal of colloid and interface science 369: 381-387.
Hoffmann, M. R., Martin, S. T., Choi, W. and Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical reviews 95: 69-96.
Hosseinzadeh, H., Pashaei, S., Hosseinzadeh, S., Khodaparast, Z., Ramin, S. and Saadat, Y. (2018). Preparation of novel multi-walled carbon nanotubes nanocomposite adsorbent via RAFT technique for the adsorption of toxic copper ions. Science of the Total Environment 640: 303-314.
Hu, C., Jimmy, C. Y., Hao, Z. and Wong, P. K. (2003). Photocatalytic degradation of triazine-containing azo dyes in aqueous TiO2 suspensions. Applied Catalysis B: Environmental 42: 47-55.
Hu, J., Chen, G. and Lo, I. M. (2006). Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. Journal of environmental engineering 132: 709-715.
Hu, X.-j., Liu, Y.-g., Wang, H., Chen, A.-w., Zeng, G.-m., Liu, S.-m., Guo, Y.-m., Hu, X., Li, T.-t. and Wang, Y.-q. (2013). Removal of Cu (II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Separation and purification technology 108: 189-195.
Hu, X.-j., Liu, Y.-g., Zeng, G.-m., You, S.-h., Wang, H., Hu, X., Guo, Y.-m., Tan, X.-f. and Guo, F.-y. (2014). Effects of background electrolytes and ionic strength on enrichment of Cd (II) ions with magnetic graphene oxide–supported sulfanilic acid. Journal of colloid and interface science 435: 138-144.
Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L. and Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of hazardous materials 211: 317-331.
Hur, J., Shin, J., Yoo, J. and Seo, Y.-S. (2015). Competitive adsorption of metals onto magnetic graphene oxide: comparison with other carbonaceous adsorbents. The Scientific World Journal 2015.
Hwang, D. W., Kim, J., Park, T. J. and Lee, J. S. (2002). Mg-doped WO3 as a novel photocatalyst for visible light-induced water splitting. Catalysis Letters 80: 53-57.
Kadhom, M., Kalash, K. and Al-Furaiji, M. (2022). Performance of 2D MXene as an adsorbent for malachite green removal. Chemosphere 290: 133256.
Kalash, K., Kadhom, M. and Al-Furaiji, M. (2020a). Thin film nanocomposite membranes filled with MCM-41 and SBA-15 nanoparticles for brackish water desalination via reverse osmosis. Environmental Technology & Innovation 20: 101101.
Kalash, K. R., Al-Furaiji, M. H., Waisi, B. and Ali, R. A. (2020b). Evaluation of adsorption performance of phenol using non-calcined Mobil composition of matter no. 41 particles. Desalin. Water Treat. 198: 232-240.
Kormann, C., Bahnemann, D. W. and Hoffmann, M. R. (1991). Photolysis of chloroform and other organic molecules in aqueous titanium dioxide suspensions. Environmental science & technology 25: 494-500.
Kumar, A., Kumar, S., Bahuguna, A., Kumar, A., Sharma, V. and Krishnan, V. (2017). Recyclable, bifunctional composites of perovskite type N-CaTiO3 and reduced graphene oxide as an efficient adsorptive photocatalyst for environmental remediation. Materials Chemistry Frontiers 1: 2391-2404.
Kumar, S., Nair, R. R., Pillai, P. B., Gupta, S. N., Iyengar, M. and Sood, A. K. (2014). Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS applied materials & interfaces 6: 17426-17436.
Lee, Y.-C. and Yang, J.-W. (2012). Self-assembled flower-like TiO2 on exfoliated graphite oxide for heavy metal removal. Journal of industrial and engineering chemistry 18: 1178-1185.
Li, W., Li, D., Meng, S., Chen, W., Fu, X. and Shao, Y. (2011). Novel Approach To Enhance Photosensitized Degradation of Rhodamine B under Visible Light Irradiation by the Zn x Cd 1-x S/TiO2 Nanocomposites. Environmental science & technology 45: 2987-2993.
Li, Y.-H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D. and Wei, B. (2002). Lead adsorption on carbon nanotubes. Chemical Physics Letters 357: 263-266.
Liu, F., Chung, S., Oh, G. and Seo, T. S. (2012a). Three-dimensional graphene oxide nanostructure for fast and efficient water-soluble dye removal. ACS applied materials & interfaces 4: 922-927.
Liu, Z., Xu, X., Fang, J., Zhu, X., Chu, J. and Li, B. (2012b). Microemulsion synthesis, characterization of bismuth oxyiodine/titanium dioxide hybrid nanoparticles with outstanding photocatalytic performance under visible light irradiation. Applied Surface Science 258: 3771-3778.
Lou, J. C., Jung, M. J., Yang, H. W., Han, J. Y. and Huang, W. H. (2011). Removal of dissolved organic matter (DOM) from raw water by single-walled carbon nanotubes (SWCNTs). Journal of Environmental Science and Health, Part A 46: 1357-1365.
Lu, C. and Liu, C. (2006). Removal of nickel (II) from aqueous solution by carbon nanotubes. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology 81: 1932-1940.
Ma, J., Yang, M., Yu, F. and Zheng, J. (2015). Water-enhanced removal of ciprofloxacin from water by porous graphene hydrogel. Scientific reports 5: 1-10.
Ma, J., Yu, F., Zhou, L., Jin, L., Yang, M., Luan, J., Tang, Y., Fan, H., Yuan, Z. and Chen, J. (2012). Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS applied materials & interfaces 4: 5749-5760.
Ma, X., Wang, Y., Gao, M., Xu, H. and Li, G. (2010). A novel strategy to prepare ZnO/PbS heterostructured functional nanocomposite utilizing the surface adsorption property of ZnO nanosheets. Catalysis Today 158: 459-463.
Madadrang, C. J., Kim, H. Y., Gao, G., Wang, N., Zhu, J., Feng, H., Gorring, M., Kasner, M. L. and Hou, S. (2012). Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS applied materials & interfaces 4: 1186-1193.
Mamy, L., Patureau, D., Barriuso, E., Bedos, C., Bessac, F., Louchart, X., Martin-Laurent, F., Miege, C. and Benoit, P. (2015). Prediction of the fate of organic compounds in the environment from their molecular properties: a review. Critical reviews in environmental science and technology 45: 1277-1377.
Manyangadze, M., Chikuruwo, N., Chakra, C., Narsaiah, T., Radhakumari, M. and Danha, G. (2020). Enhancing adsorption capacity of nano-adsorbents via surface modification: A review. South African Journal of Chemical Engineering 31: 25-32.
Matschullat, J. (2000). Arsenic in the geosphere—a review. Science of the Total Environment 249: 297-312.
Mehrizad, A., Aghaie, M., Gharbani, P., Dastmalchi, S., Monajjemi, M. and Zare, K. (2012). Comparison of 4-chloro-2-nitrophenol adsorption on single-walled and multi-walled carbon nanotubes. Iranian journal of environmental health science & engineering 9: 1-6.
Mohammed Ali, N. S., Alalwan, H. A., Alminshid, A. H. and Mohammed, M. M. (2022). Synthesis and Characterization of Fe3O4-SiO2 Nanoparticles as Adsorbent Material for Methyl Blue Dye Removal from Aqueous Solutions. Pollution 8: 295-302.
Mohammed, M. M., Ali, N. S. M., Alalwan, H. A., Alminshid, A. H. and Aljaafari, H. A. (2021). Synthesis of ZnO-CoO/Al2O3 nanoparticles and its application as a catalyst in ethanol conversion to acetone. Results in Chemistry 3: 100249.
Montallana, A. D. S. and Vasquez Jr, M. R. (2021). Fabrication of PVA/Ag-TiO2 nanofiber mats for visible-light-active photocatalysis. Results in Physics 25: 104205.
Moradi, O. (2013). Adsorption behavior of basic red 46 by single-walled carbon nanotubes surfaces. Fullerenes, Nanotubes and Carbon Nanostructures 21: 286-301.
Munirasu, S., Haija, M. A. and Banat, F. (2016). Use of membrane technology for oil field and refinery produced water treatment—A review. Process safety and environmental protection 100: 183-202.
Nandi, D., Basu, T., Debnath, S., Ghosh, A. K., De, A. and Ghosh, U. C. (2013). Mechanistic insight for the sorption of Cd (II) and Cu (II) from aqueous solution on magnetic mn-doped Fe (III) oxide nanoparticle implanted graphene. Journal of Chemical & Engineering Data 58: 2809-2818.
Nasrollahzadeh, M., Sajjadi, M., Iravani, S. and Varma, R. S. (2021). Green-synthesized nanocatalysts and nanomaterials for water treatment: Current challenges and future perspectives. Journal of Hazardous Materials 401: 123401.
Ndolomingo, M. J., Bingwa, N. and Meijboom, R. (2020). Review of supported metal nanoparticles: synthesis methodologies, advantages and application as catalysts. Journal of Materials Science 55: 6195-6241.
Ollis, D. F., Hsiao, C.-Y., Budiman, L. and Lee, C.-L. (1984). Heterogeneous photoassisted catalysis: conversions of perchloroethylene, dichloroethane, chloroacetic acids, and chlorobenzenes. Journal of catalysis 88: 89-96.
Pinho, L., Elhaddad, F., Facio, D. S. and Mosquera, M. J. (2013). A novel TiO2–SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Applied Surface Science 275: 389-396.
Pradeep, T. (2009). Noble metal nanoparticles for water purification: a critical review. Thin solid films 517: 6441-6478.
Punia, P., Bharti, M. K., Chalia, S., Dhar, R., Ravelo, B., Thakur, P. and Thakur, A. (2021). Recent advances in synthesis, characterization, and applications of nanoparticles for contaminated water treatment-a review. Ceramics International 47: 1526-1550.
Rahman, Z. U., Wei, N., Feng, Y., Zhang, X. and Wang, D. (2018). Synthesis of Hollow Mesoporous TiO2 Microspheres with Single and Double Au Nanoparticle Layers for Enhanced Visible‐Light Photocatalysis. Chemistry–An Asian Journal 13: 432-439.
Rao, G. P., Lu, C. and Su, F. (2007). Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Separation and purification technology 58: 224-231.
Sahraei, R. and Ghaemy, M. (2017). Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity. Carbohydrate polymers 157: 823-833.
Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S. K., Grace, A. N. and Bhatnagar, A. (2016). Role of nanomaterials in water treatment applications: a review. Chemical Engineering Journal 306: 1116-1137.
Santos, T. R. andrade, M. B., Silva, M. F., Bergamasco, R. and Hamoudi, S. (2019). Development of α-and γ-Fe2O3 decorated graphene oxides for glyphosate removal from water. Environmental technology 40: 1118-1137.
Savage, N. and Diallo, M. S. (2005). Nanomaterials and water purification: opportunities and challenges. Journal of Nanoparticle research 7: 331-342.
Shen, J., Huang, W., Li, N. and Ye, M. (2015). Highly efficient degradation of dyes by reduced graphene oxide–ZnCdS supramolecular photocatalyst under visible light. Ceramics International 41: 761-767.
Singh, S. and Batra, R. (2018). Nanotechnology in wastewater treatment: A review. Novel Applications in Polymers and Waste Management: 173-182.
Sinha, V. and Chakma, S. (2019). Advances in the preparation of hydrogel for wastewater treatment: A concise review. Journal of Environmental Chemical Engineering 7: 103295.
Sitko, R., Turek, E., Zawisza, B., Malicka, E., Talik, E., Heimann, J., Gagor, A., Feist, B. and Wrzalik, R. (2013a). Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton transactions 42: 5682-5689.
Sitko, R., Zawisza, B. and Malicka, E. (2013b). Graphene as a new sorbent in analytical chemistry. TrAC Trends in Analytical Chemistry 51: 33-43.
Stafiej, A. and Pyrzynska, K. (2008). Solid phase extraction of metal ions using carbon nanotubes. Microchemical Journal 89: 29-33.
Sudha, D. and Sivakumar, P. (2015). Review on the photocatalytic activity of various composite catalysts. Chemical Engineering and Processing: Process Intensification 97: 112-133.
Sun, W., Shah, S., Chen, Y., Tan, Z., Gao, H., Habib, T., Radovic, M. and Green, M. (2017). Electrochemical etching of Ti2AlC to Ti2CT x (MXene) in low-concentration hydrochloric acid solution. Journal of Materials Chemistry A 5: 21663-21668.
Szuplewska, A., Kulpińska, D., Dybko, A., Chudy, M., Jastrzębska, A. M., Olszyna, A. and Brzózka, Z. (2020). Future applications of MXenes in biotechnology, nanomedicine, and sensors. Trends in biotechnology 38: 264-279.
Tang, C.-Y., Yu, P., Tang, L.-S., Wang, Q.-Y., Bao, R.-Y., Liu, Z.-Y., Yang, M.-B. and Yang, W. (2018). Tannic acid functionalized graphene hydrogel for organic dye adsorption. Ecotoxicology and Environmental Safety 165: 299-306.
Wan, J., Tao, T., Zhang, Y., Liang, X., Zhou, A. and Zhu, C. (2016). Phosphate adsorption on novel hydrogel beads with interpenetrating network (IPN) structure in aqueous solutions: kinetics, isotherms and regeneration. RSC advances 6: 23233-23241.
Wang, F. (2017). Effect of oxygen-containing functional groups on the adsorption of cationic dye by magnetic graphene nanosheets. Chemical Engineering Research and Design 128: 155-161.
Wang, L., Shi, C., Pan, L., Zhang, X. and Zou, J.-J. (2020a). Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: A review. Nanoscale 12: 4790-4815.
Wang, P., Wang, F., Jiang, H., Zhang, Y., Zhao, M., Xiong, R. and Ma, J. (2020b). Strong improvement of nanofiltration performance on micropollutant removal and reduction of membrane fouling by hydrolyzed-aluminum nanoparticles. Water research 175: 115649.
Wang, S., Ng, C. W., Wang, W., Li, Q. and Hao, Z. (2012). Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes. Chemical engineering journal 197, 34-40.
Wang, X., Lu, J. and Xing, B. (2008). Sorption of organic contaminants by carbon nanotubes: influence of adsorbed organic matter. Environmental science & technology 42: 3207-3212.
Wang, Y., Liang, S., Chen, B., Guo, F., Yu, S. and Tang, Y. (2013). Synergistic removal of Pb (II), Cd (II) and humic acid by Fe3O4@ mesoporous silica-graphene oxide composites. PloS one 8: e65634.
Xie, G., Xi, P., Liu, H., Chen, F., Huang, L., Shi, Y., Hou, F., Zeng, Z., Shao, C. and Wang, J. (2012). A facile chemical method to produce superparamagnetic graphene oxide–Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution. Journal of Materials Chemistry 22: 1033-1039.
Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., Lai, C., Wei, Z., Huang, C. and Xie, G. X. (2012). Use of iron oxide nanomaterials in wastewater treatment: a review. Science of the Total Environment 424: 1-10.
Xu, Y., Shan, Y., Cong, H., Shen, Y. and Yu, B. (2018). Advanced carbon-based nanoplatforms combining drug delivery and thermal therapy for cancer treatment. Current pharmaceutical design 24: 4060-4076.
Yang, F., Zhang, S., Sun, Y., Cheng, K., Li, J. and Tsang, D. C. (2018). Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresource technology 265: 490-497.
Yang, G., Li, X., Wang, Y., Li, Q., Yan, Z., Cui, L., Sun, S., Qu, Y. and Wang, H. (2019). Three-dimensional interconnected network few-layered MoS2/N, S co-doped graphene as anodes for enhanced reversible lithium and sodium storage. Electrochimica Acta 293: 47-59.
Yang, K. and Xing, B. (2007). Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water. Environmental Pollution 145: 529-537.
Yang, Q., Chen, G., Zhang, J. and Li, H. (2015). Adsorption of sulfamethazine by multi-walled carbon nanotubes: effects of aqueous solution chemistry. RSC advances 5: 25541-25549.
Yang, S.-T., Chang, Y., Wang, H., Liu, G., Chen, S., Wang, Y., Liu, Y. and Cao, A. (2010). Folding/aggregation of graphene oxide and its application in Cu2+ removal. Journal of colloid and interface science 351: 122-127.
Yu, C., Li, G., Kumar, S., Yang, K. and Jin, R. (2014). Phase transformation synthesis of novel Ag2O/Ag2CO3 heterostructures with high visible light efficiency in photocatalytic degradation of pollutants. Advanced materials 26: 892-898.
Yu, F., Ma, J. and Bi, D. (2015). Enhanced adsorptive removal of selected pharmaceutical antibiotics from aqueous solution by activated graphene. Environmental Science and Pollution Research 22: 4715-4724.
Yu, F., Wu, Y., Li, X. and Ma, J. (2012). Kinetic and thermodynamic studies of toluene, ethylbenzene, and m-xylene adsorption from aqueous solutions onto KOH-activated multiwalled carbon nanotubes. Journal of agricultural and food chemistry 60: 12245-12253.
Yu, Y., Shu, Y. and Ye, L. (2018). In situ crosslinking of poly (vinyl alcohol)/graphene oxide-glutamic acid nano-composite hydrogel as microbial carrier: Intercalation structure and its wastewater treatment performance. Chemical Engineering Journal 336: 306-314.
Yuan, G. (2004). Natural and modified nanomaterials as sorbents of environmental contaminants. Journal of Environmental Science and Health, Part A 39: 2661-2670.
Zhang, L., Song, X., Liu, X., Yang, L., Pan, F. and Lv, J. (2011). Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chemical engineering journal 178: 26-33.
Zhang, L., Zeng, Y. and Cheng, Z. (2016). Removal of heavy metal ions using chitosan and modified chitosan: A review. Journal of Molecular Liquids 214: 175-191.
Zhang, Y., Ni, S., Wang, X., Zhang, W., Lagerquist, L., Qin, M., Willför, S., Xu, C. and Fatehi, P. (2019). Ultrafast adsorption of heavy metal ions onto functionalized lignin-based hybrid magnetic nanoparticles. Chemical Engineering Journal 372: 82-91.
Zhang, Y., Yan, L., Xu, W., Guo, X., Cui, L., Gao, L., Wei, Q. and Du, B. (2014). Adsorption of Pb (II) and Hg (II) from aqueous solution using magnetic CoFe2O4-reduced graphene oxide. Journal of Molecular Liquids 191: 177-182.
Zhao, D., Zhang, W., Chen, C. and Wang, X. (2013). Adsorption of methyl orange dye onto multiwalled carbon nanotubes. Procedia Environmental Sciences 18: 890-895.
Zhao, G., Li, J., Ren, X., Chen, C. and Wang, X. (2011a). Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environmental science & technology 45: 10454-10462.
Zhao, L., Xue, F., Yu, B., Xie, J., Zhang, X., Wu, R., Wang, R., Hu, Z., Yang, S.-T. and Luo, J. (2015). TiO2–graphene sponge for the removal of tetracycline. Journal of Nanoparticle Research 17, 1-9.
Zhao, X., Lv, L., Pan, B., Zhang, W., Zhang, S. and Zhang, Q. (2011b). Polymer-supported nanocomposites for environmental application: A review. Chemical engineering journal 170: 381-394.
Zhu, H., Jiang, R., Xiao, L. and Zeng, G. (2010). Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized γ-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresource technology 101: 5063-5069. | ||
آمار تعداد مشاهده مقاله: 1,226 تعداد دریافت فایل اصل مقاله: 1,051 |