تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,516 |
تعداد مشاهده مقاله | 124,131,556 |
تعداد دریافت فایل اصل مقاله | 97,237,843 |
حل عددی معادلات آب کمعمق دو لایه بهروش تفکیک مد | ||
فیزیک زمین و فضا | ||
مقاله 14، دوره 48، شماره 2، شهریور 1401، صفحه 477-494 اصل مقاله (5.92 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2022.334561.1007384 | ||
نویسنده | ||
حکیم گلشاهی* | ||
استادیار، گروه فیزیک، واحد شوشتر، دانشگاه آزاد اسلامی، شوشتر، ایران | ||
چکیده | ||
در پژوهش حاضر، برای حل عددی دستگاه معادلات آب کمعمق دولایه برحسب متغیرهای فشارورد و کژفشار از روش تفکیک مد با گامهای زمانی متفاوت استفاده شد. برای گسستهسازی مکانی، روشهای مرتبه دوم مرکزی و فشرده مرتبه چهارم به کار گرفته شدند و برای گسستهسازی زمانی در هر دو بخش فشارورد و کژفشار از روش لیپ فراگ بهصورت نیمهضمنی بههمراه پالایه زمانی روبرت-آسلین استفاده شده است. ابتدا مد کژفشار با گام زمانی بزرگ و سپس مد فشارورد با گام زمانی کوچکتر حل شده است تا بتوان مقادیر کژفشار موردنیاز در مد فشارورد را از مد کژفشار استخراج کرد. برای این منظور در طی یک گام زمانی کژفشار، مقادیر کژفشار ثابت در نظر گرفته شده یا با درونیابی زمانی تعیین شدهاند. تحلیل منحنیهای خطا نشان میدهد که درونیابی زمانی مقادیر کژفشار برای بهکارگیری در مد فشارورد میتواند به نتایجی بهتر منجر شود و شرایط پایدارتری را فراهم کند. همچنین، میتوان ناپایداری عددی در گامهای زمانی کژفشار بزرگ را با افزایش ضریب پالایه زمانی کنترل کرد. | ||
کلیدواژهها | ||
معادلات آب کمعمق؛ محیط دولایه؛ روش تفکیک مد؛ مدهای فشارورد و کژفشار؛ ناپایداری عددی | ||
مراجع | ||
قادر، س.، احمدیگیوی، ف. و گلشاهی، ح.، 1389، مقایسه عملکرد روشهای ابرفشرده و فشرده ترکیبی مرتبه ششم در گسستهسازی مکانی مدل آب کمعمق دولایهای: نمایش امواج گرانی-لختی و راسبی خطی. مجله ژئوفیزیک ایران، 4(2)، 49-69.
قادر، س.، احمدیگیوی، ف. و گلشاهی، ح.، 1391، حل عددی معادلات آب کم عمق با استفاده از روش فشرده ترکیبی مرتبه ششم. مجله ژئوفیزیک ایران، 6(4)، 35-49.
گلشاهی، ح. و قادر، س.، 1396، حل عددی معادلات آب کم عمق دو لایه بر حسب متغیرهای فشارورد و کژفشار با استفاده از روش فشرده مرتبه چهارم. مجله ژئوفیزیک ایران، 11(2)، 1-14.
Bleck, R. and Smith, L.T., 1990, A wind-driven isopycnic coordinate model of the north and equatorial Atlantic Ocean: 1. Model development and supporting experiments. Journal of Geophysical Research: Oceans, 95(C3), 3273-3285. Bouchut, F., Ribstein, B. and Zeitlin, V., 2011, Inertial, barotropic, and baroclinic instabilities of the Bickley jet in two-layer rotating shallow water model. Physics of Fluids, 23(12), 126601, https://doi.org/10.1063/1.3661995 Chen, C., Liu, H. and Beardsley, R. C., 2003, An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology, 20(1), 159-186. Comblen, R., Blaise, S., Legat, V., Remacle, J. F., Deleersnijder, E. and Lambrechts, J., 2010, A discontinuous finite element baroclinic marine model on unstructured prismatic meshes. Ocean Dynamics, 60(6), 1395-1414. Debreu, L., Marchesiello, P., Penven, P. and Cambon, G., 2012, Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Modelling, 49, 1-21. Demange, J., Debreu, L., Marchesiello, P., Lemarié, F., Blayo, E. and Eldred, C., 2019, Stability analysis of split-explicit free surface ocean models: Implication of the depth-independent barotropic mode approximation. Journal of Computational Physics, 398, 108875, https://doi.org/10.1016/j.jcp.2019.108875 Dritschel, D. G., Polvani, L. M. and Mohebalhojeh, A. R., 1999, The contour-advective semi-Lagrangian algorithm for the shallow water equations. Monthly Weather Review, 127(7), 1551-1565. Durran, D. R., 1999, Numerical methods for wave equations in geophysical fluid dynamics. Springer, 465. Han, L., 2014, A two-time-level split-explicit ocean circulation model (MASNUM) and its validation. Acta Oceanologica Sinica, 33(11), 11-35. Higdon, R. L., 2020, Discontinuous Galerkin methods for multi-layer ocean modeling: Viscosity and thin layers. Journal of Computational Physics, 401, 109018, https://doi.org/10.1016/j.jcp.2019.109018 Hirsh, R. S., 1975, Higher order accurate difference solutions of fluid mechanics problems by a compact differencing technique. Journal of Computational Physics, 19, 90-109. Huang, H., Chen, C., Cowles, G. W., Winant, C. D., Beardsley, R. C., Hedstrom, K. S. and Haidvogel, D. B., 2008, FVCOM validation experiments: Comparisons with ROMS for three idealized barotropic test problems. Journal of Geophysical Research, 113(C7), C07042, https://doi.org/10.1029/2007JC004557. Kang, H. G., Evans, K. J., Petersen, M. R., Jones, P. W. and Bishnu, S., 2021, A scalable semi-implicit barotropic mode solver for the MPAS Ocean. Journal of Advances in Modeling Earth Systems, 13(4), e2020MS002238. Kantha, L. H. and Clayson, C. A., 2000, Numerical models of oceans and oceanic processes. Academic Press, 940. Karsten, R. H. and Swaters, G. E., 1999, A unified asymptotic derivation of two-layer, frontal geostrophic models including planetary sphericity and variable topography. Physics of Fluids, 11(9), 2583-2597. Lazure, P. and Dumas, F., 2008, An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Advances in Water Resources, 31(2), 233-250. Lele, S. K., 1992, Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103, 16-42. Madala, R. V. and Piacsek, S. A., 1977, A semi-implicit numerical model for baroclinic oceans. Journal of Computational Physics, 23, 167-178. Mellor, G. L., 2004, Users guide for a three-dimensional, primitive equation, numerical ocean model (January 2004 version) In: Program in Atmospheric and Oceanic Sciences. Princeton University, Princeton, NJ 08544-0710, 56. Morel, Y., Baraille, R. and Pichon, A., 2008, Time splitting and linear stability of the slow part of the barotropic component. Ocean Modelling, 23(3-4), 73-81. O'Brien, J. J. and Hurlburt, H. E., 1972, A numerical model of coastal upwelling. Journal of Physical Oceanography, 2, 14-26. Qiang, W., Zhou, W. and Wang, D., 2014, Implementation of new time integration methods in POM. Ocean Dynamics, 64(5), 643-654. Shchepetkin, A. F. and McWilliams, J. C., 2005, The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347-404. Simonnet, E., Ghil, M., Ide, K., Temam, R. and Wang, S., 2003, Low-frequency variability in shallow-water models of the wind-driven ocean circulation. Part I: Steady-state solution. Journal of Physical Oceanography, 33(4), 712-728. Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S., Jochum, M., Large, W., Lindsay, K., Maltrud, M., Norton, N., Peacock, S., Vertenstein, M. and Yeager, S., 2010, The parallel ocean program (POP) reference manual ocean component of the community climate system model (CCSM) and community earth system model (CESM). LAUR-01853, 141, 1-140. Spydell, M. and Cessi, P., 2003, Baroclinic modes in a two-layer basin. Journal of Physical Oceanography, 33(3), 610-622. Tanaka, Y. and Akitomo, K., 2010, Alternating zonal flows in a two-layer wind-driven ocean. Journal of Oceanography, 66(4), 475-487. Zhuang, Z., Yuan, Y. and Yang, G., 2018, An ocean circulation model in σ S-z-σ B hybrid coordinate and its validation. Ocean Dynamics, 68(2), 159-175. | ||
آمار تعداد مشاهده مقاله: 863 تعداد دریافت فایل اصل مقاله: 573 |