- غلامی، سیاوش؛ قادر، سرمد؛ خالقی زواره، حسن و غفاریان، پروین. (1398). حساسیتسنجی میدان باد سطحی شبیهسازیشده توسط مدل WRF به شرایط اولیه و طرحوارههای پارامترسازی لایهمرزی سیارهای (مطالعه موردی: منطقه خلیجفارس).مجله ژئوفیزیک ایران، 13(1)،14-31.
- غفاریان، پروین؛ پگاه فر، نفیسه و محمدپور پنچاه، محمدرضا. (1398). شبیهسازی میدان باد سطحی در منطقه دریای عمان با مدل WRF با شرایط مرزی متفاوت.فیزیک زمین و فضا، 45(1)، 197-209.
- لایقی، بهزاد؛ سرمد، قادر؛ علیاکبری بیدختی، عباسعلی و آزادی، مجید. (1395). حساسیت سنجی شبیهسازیهای مدل WRF به پارامترسازی های فیزیکی در محدوده خلیجفارس و دریای عمان در زمان مونسون تابستانی. مجله ژئوفیزیک ایران، 11(1)، 19-1.
- Awan, N.K., Truhetz, H., & Gobiet, A. (2011). Parameterization-induced error characteristics of MM5 and WRF operated in climate mode over the alpine region: an ensemble-based analysis. Clim. 24 (12), 3107–3123.
- Balzarini, A., Angelini, F., Ferrero, L., Moscatelli, M., Perrone, M. G., Pirovano, G., & Bolzacchini, E. (2014). Sensitivity analysis of PBL schemes by comparing WRF model and experimental data. Geoscientific Model Development Discussions, 7(5), 6133-6171.
- Bernier, N. B., & S. Belair, (2011). High horizontal and vertical resolution limited-area model: Near-surface and wind energy forecast applications, J. Appl. Meteor. Climatol, 51, 1061-1078.
- Carvalho, D., Rocha, A., Gomez-Gesteira, ´ M., & Silva Santos, C., (2014). WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal. Energy 117, 116–126.
- Charabi, Y., Al Hinai, A., Al-Yahyai, S., Al Awadhi, T., & Choudri, BS. (2019). Offshore wind potential and wind atlas over the Oman Maritime Zone. Energy, Ecology and Environment, 4, 1-14.
- Chauhan, H. M., Pomal, M. M., & Bhuta, N. (2013), A comparative study of wind forces on high-rise buildings as per is 875-Iii (1987) and proposed draft code (2011). Global journal for research analysis, 2 (5), 2277- 8160.
- Chou M.-D., & Suarez, M. J. (1994). An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606(3), 85pp.
- Dee, D.P., Uppala, S.M, Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A.C.M., van den Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Holm, ´ E.V., Isaksen, L., Kållberg, P., Kohler, ¨ M., Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Th´epaut, J.-N., & Vitart, F., (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. J. R. Meteorol. Soc. 137 (656), 553–597.
- Ghafarian, P., Pegahfar, N., & Mohammadpour Penchah, M. (2019). Simulation of the surface wind field by the WRF model in Oman Sea region with different initial and boundary conditions. Journal of the Earth and Space Physics, 45(1), 197-209. [In Persian].
- Gholami, S., Ghader, S., Khaleghi Zavareh, H., & Ghafarian, P. (2019). Sensitivity of the WRF model surface wind simulations to initial conditions and planetary boundary layer parameterization schemes (case study: over Persian Gulf). Iranian Journal of Geophysics, 13(1), 14-31. [In Persian].
- Gholami, S., Ghader, S., Khaleghi-Zavareh, H., & Ghafarian, P. (2021). Sensitivity of WRF-simulated 10 m wind over the Persian Gulf to different boundary conditions and PBL parameterization schemes. Atmospheric Research, 247, 105147.
- Grell, G. A., & Freitas, S. R., (2014). A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Phys., 14, 5233-5250.
- Hahmann, A., D. Rostkier-Edelstein, F. Vandenberghe, Y. Liu, Swerdlin, T. Warner, and R. Babarsky, 2010: A reanalysis system for the generation of mesoscale climatographies. J. Appl. Meteor. Climatol, 49, 954–972.
- Han, J. Y., Baik, J. J., & Lee, H. (2014). Urban impacts on precipitation. Asia-Pacific Journal of Atmospheric Sciences, 50(1), 17-30.
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, ´ A., Munoz-Sabater, ˜ J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R., Holm, ´ E., Janiskova, ´ M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., & Th´epaut, J.-N., (2020). The ERA5 global reanalysis. J. R. Meteorol. Soc, 146 (730), 1999–2049.
- Hong, S.–Y., & H.–L. Pan, (1996). Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev, 124, 2322–2339.
- Hong, S.–Y., & J.–O. J. Lim, (2006). The WRF single–moment 6–class microphysics scheme (WSM6). Korean Meteor. Soc., 42, 129–151.
- Hong, Song–You., Yign, N., Jimy, D., (2006). A new vertical diffusion package with an explicit treatment of entrainment processes. Wea. Rev., 134, 2318–2341.
- Janjic, Zavisa I., (1994). The Step–Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Wea. Rev., 122, 927–945.
- Layeghi, B., Ghader, S., Ali Akbari Bidokhti, A. A., & Azadi, M. (2017). Sensitivity of WRF model simulations to physical parameterization over the Persian Gulf and Oman Sea during summer monsoon. Iranian Journal of Geophysics, 11(1), 1-19. [In Persian].
- Li, Ji-Hang., Guo, Zhen-Hai.,. & Wang, Hui-Jun. (2014) Analysis of Wind Power Assessment Based on the WRF Model. Atmospheric and Oceanic Science Letters, 7(2), 126-131.
- Liu Y, Chen D, Li S, Chan PW. Discerning the spatial variations in offshore wind resources along the coast of China via dynamic downscaling. Energy, 160, 582-596.
- Mattar, C., Borvaran, D. (2016). Offshore wind power simulation by using WRF in the central coast of Chile. Renewable Energy, 94, 22-31.
- Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), 16663-16682.
- Mughal, M.O., Lynch, M., Yu, F., McGann, B., Jeanneret, F., & Sutton, J., (2017). Wind modeling, validatio, and sensitivity study using Weather Research and Forecasting model in complex terrain. Model. Software 90, 107–125.
- Nakanishi, M., & Niino, H. (2006). An improved Mellor–Yamada level 3 model: its numerical stability and application to a regional prediction of advecting fog. Layer Meteor. 119, 397–407.
- Pleim, Jonathan E. (2007). A Combined Local and Nonlocal Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. Appl. Meteor. Climatol, 46, 1383–1395.
- Salvação, N., & Soares, CG. (2018). Wind resource asse3ssment offshore the Atlantic Iberian coast with the WRF model. Energy, 145, 276-287.
- Santos-Alamillos, F. J., Pozo-Vázquez, D., Ruiz-Arias, J. A., Lara-Fanego, V., & Tovar-Pescador, J. (2013). Analysis of WRF model wind estimate sensitivity to physics parameterization choice and terrain representation in Andalusia (Southern Spain). Journal of Applied Meteorology and Climatology, 52(7), 1592-1609.
- Shimada, S., & Ohsawa, T. (2011). Accuracy and characteristics of offshore wind speeds simulated by WRF. SOLA, 7, 21–24.
- Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., & Powers, J. G. (2008). A description of the Advanced Research WRF version 3. NCAR Technical note-475+ STR.
- Sukoriansky, S., B. Galperin, & Perov, V. (2005). Application of a new spectral model of stratified turbulence to the atmospheric boundary layer over sea ice. –Layer Meteor., 117, 231–257.
- Tewari, M., F. Chen, W. Wang, J. Dudhia, M. A. LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel, & Cuenca, R. H. (2004). Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15.
- Tuchtenhagen, P., De Carvalho, G. G., Martins, G., Da Silva, P. E., De Oliveira, C. P., Andrade, L. D. M. B., & e Silva, C. M. S. (2020). WRF model assessment for wind intensity and power density simulation in the southern coast of Brazil. Energy, 190, 116341.
- Zhang, L., Xin, J., Yin, Y., Chang, W., Xue, M., Jia, D., & Ma, Y. (2021). A Major Impact of WRF Planetary Boundary Layer Schemes on Simulation Accuracy of Vertical Wind Structure by 3D Doppler Wind Lidar.
|