- Asemota, O. J., Bamanga, M. A. & Alaribe, O. J. (2016). Modelling seasonal behavior of rainfall in northeast Nigeria. A state space approach. International Journal of Statistics and Applications, 6 (4), 203-222.
- Brath, A., Montanari, A. & Toth, E. (2002). Neural networks and nonparametric methods for improving real-time flood forecasting through conceptual hydrological models. Hydrology and Earth System Sciences Discussions, 6 (4), 627-639.
- Box, G. & Jenkins, G. (1970). Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco.
- Durbin, J. & Koopman, S. J. (2012). Time Series Analysis by State Space Methods. Oxford University 343.
- Gabriel, A.C. (2021). A SARIMA and Adjusted SARIMA Models in a Seasonal Nonstationary Time Series; Evidence of Enugu Monthly Rainfall. European Journal of Mathematics and Statistics, 2 (1), 13-18.
- Harting, C. (2010). Rainfall as an Energy Source. Available from: http://large.stanford.edu/courses/2010/ ph240/harting2/.
- Hyndman RJ, Khandakar Y. (2008). Automatic time series forecasting: the forecast package for R. Journal of Statistical Software, 27 (3), 1-22.
- Hyndman, R. J., Koehler, A. B., Ord, J. K. & Snyder, R. D. (2008). Forecasting with Exponential Smoothing: The State Space Approach. Springer-Verlag, Berlin.
- Little, R. J. A. & Rubin, D. B. (1987). Statistical Analysis with Missing Data. John Wiley & Sons, New York, NY.
- Livera, Alysha M., Rob J. Hyndman, and Ralph D. Snyder. (2011). Forecasting time series with complex seasonal patterns usi ng exponential smoothing. Journal of the American Statistical Association, 106(496), 1513-1527.
- Masazade, E., Bakır, A. K. & Kırcı, P. (2019). A Kalman filter application for rainfall estimation using radar reflectivity. Turkish Journal of Electrical Engineering and Computer Sciences, 27, 1198-1212.
- Neslihanoglu, S., Ünal, E., Yozgatlıgil, C. (2021). Performance comparison of filtering methods on modelling and forecasting the total precipitation amount: a case study for Muğla in Turkey. Journal of Water and Climate Change, 12.4, 1071-1085.
- Naim, I., Mahara, T., Idrisi, A.R. (2018). Effective Short-Term Forecasting for Daily Time Series with Complex Seasonal Patterns, Procedia Computer Science 132, 1832-1841.
- Ribeiro, M. I. (2000). Introduction to Kalman Filtering: A Set of Two Lectures.
- Ribeiro, M. I. (2004). Kalman and Extended Kalman Filters: Concept, Derivation and Properties. Lisboa: Institute for Systems and Robotics.
- Soltani, S., Modarres, R. & Eslamian, S. S. (2007). The use of time series modelling for the determination of rainfall climates of Iran. International Journal of Climatology, 27, 819-829.
- Sun, M., Li, X. & Kim, G. (2019). Precipitation analysis and forecasting using singular spectrum analysis with artificial neural networks. Cluster Computing, 22, 12633-12640.
- Sadeghi, M., Asanjan, A. A., Faridzad, M., Nguyen, P., Hsu, K., Sorooshian, S. & Braithwaite, D. (2019). PERSIANN-CNN: Precipitation estimation from remotely sensed information using artificial neural networks–convolutional neural networks. Journal of Hydrometeorology, 20 (12), 2273-2289.
- Shumway, R. H., & Stoffer, D. S. (2016). State Space Models. In Time Series Analysis and Its Applications with R Examples. 287-295. New York: Springer.
- Soumik, R., Soumitra, S. D., Pradeep, M., & Khatib, A. M. G. A. (2021). Time Series SARIMA Modelling and Forecasting of Monthly Rainfall and Temperature in the South Asian Countries. Earth Systems and Environment, 5, 531-546.
- Toth, E., Brath, A. & Montanari, A. (2000). Comparison of shortterm rainfall prediction models for real-time flood forecasting. Journal of Hydrology, 239, 132-147.
- Tamatta, R. K., (2018). Time series forecasting of hospital Inpatients and Day case waiting list using ARIMA, TBATS and Neural Network Models.
- Willmott, C.J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. CLIMATE RESEARCH Clim Res, 30, 79-82.
- Yozgatligil, C., Aslan, S., Iyigun, C. & Batmaz, I. (2013). Comparison of missing value imputation methods for Turkish meteorological time series data. Theoretical and Applied Climatology, 112, 143-167.
- Yu, C., Xu, C., Li, Y., Yao, S., Bai, Y., Li, J, Wang, L., Wu, W., & Wang, Y., (2021). Time Series Analysis and Forecasting of the Hand-Foot-Mouth Disease Morbidity in China Using an Advanced Exponential Smoothing State Space TBATS Model. Infection and Drug Resistance, 14, 2809-2821.
- Zulfi, M., Hasan, M. & Purnomo, K. D. (2018). The development rainfall forecasting using Kalman filter. Journal of Physics: Conference Series, 1008 (1), 012006.
- Zeng, Q., Li, D., Huang, G., Xia, J., Wang, X., Zhang, Y., Tang, W., & Zhou, H. (2016). Time series analysis of temporal trends in the pertussis incidence in Mainland China from 2005 to 2016. Scientific RepoRts, 6, 32367.
|