- Aghelpour, P., Bahrami-Pichaghchi, H., & Varshavian, V. (2021). Hydrological drought forecasting using multi-scalar streamflow drought index, stochastic models and machine learning approaches, in northern Iran. Stochastic Environmental Research and Risk Assessment, 1-21.
- Ahmadi, F. (2021). Evaluation of the Efficiency of Data Preprocessing Methods on Improving the Performance of Gene Expression Programming Model (Case Study: Ab Zal River). Water and Soil, 35(2), 153-165. (In Persian).
- Ahmadi, F., Mehdizadeh, S., Mohammadi, B., Pham, Q. B., Doan, T. N. C., & Vo, N. D. (2021). Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation. Agricultural Water Management, 244, 106622.
- Ali, M., Prasad, R., Xiang, Y., & Yaseen, Z. M. (2020). Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts. Journal of Hydrology, 584, 124647.
- Baydaroğlu, Ö., Koçak, K., & Duran, K. (2018). River flow prediction using hybrid models of support vector regression with the wavelet transform, singular spectrum analysis and chaotic approach. Meteorology and Atmospheric Physics, 130(3), 349-359.
- Bednarik, M., Magulová, B., Matys, M., & Marschalko, M. (2010). Landslide susceptibility assessment of the Kraľovany–Liptovský Mikuláš railway case study. Physics and Chemistry of the Earth, Parts A/B/C, 35(3-5), 162-171.
- Booker, D. J., & Snelder, T. H. (2012). Comparing methods for estimating flow duration curves at ungauged sites. Journal of Hydrology, 434, 78-94.
- Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.
- Chen, B. H., Wang, X. Z., Yang, S. H., & McGreavy, C. (1999). Application of wavelets and neural networks to diagnostic system development, 1, feature extraction. Computers & Chemical Engineering, 23(7), 899-906.
- Choubey, V., Mishra, S., & Pandey, S. K. (2014). Time series data mining in real time surface runoff forecasting through Support Vector Machine. International Journal of Computer Applications, 98(3), 23-30.
- Christian, K., Roy, A. F., Yudianto, D., & Zhang, D. (2021). Application of optimized Support Vector Machine in monthly streamflow forecasting: using Autocorrelation Function for input variables estimation. Sustainable Water Resources Management, 7(3), 1-14.
- Drisya, J., Kumar, D. S., & Roshni, T. (2021). Hydrological drought assessment through streamflow forecasting using wavelet enabled artificial neural networks. Environment, Development and Sustainability, 23(3), 3653-3672.
- Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, No. 10). New York: Springer series in statistics.
- Ghorbani, M. A., Deo, R. C., Kim, S., Kashani, M. H., Karimi, V., & Izadkhah, M. (2020). Development and evaluation of the cascade correlation neural network and the random forest models for river stage and river flow prediction in Australia. Soft Computing, 1-12.
- Ghorbani, M. A., Zadeh, H. A., Isazadeh, M., & Terzi, O. (2016). A comparative study of artificial neural network (MLP, RBF) and support vector machine models for river flow prediction. Environmental Earth Sciences, 75(6), 476.
- Hammad, M., Shoaib, M., Salahudin, H., Baig, M. A. I., Khan, M. M., & Ullah, M. K. (2021). Rainfall forecasting in upper Indus basin using various artificial intelligence techniques. Stochastic Environmental Research and Risk Assessment, 1-23.
- Khodakhah, H., Aghelpour, P., & Hamedi, Z. (2021). Comparing linear and non-linear data-driven approaches in monthly river flow prediction, based on the models SARIMA, LSSVM, ANFIS, and GMDH. Environmental Science and Pollution Research, 1-20.
- Lohani, A. K., Kumar, R., & Singh, R. D. (2012). Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques. Journal of Hydrology, 442, 23-35.
- Mallat, S. (1999). A wavelet tour of signal processing. Elsevier.
- Mallat, S. G. (2009). A theory for multiresolution signal decomposition: the wavelet representation. In Fundamental Papers in Wavelet Theory (pp. 494-513). Princeton University Press.
- Mehdizadeh, S., Ahmadi, F., Mehr, A. D., & Safari, M. J. S. (2020). Drought modeling using classic time series and hybrid wavelet-gene expression programming models. Journal of Hydrology, 587, 125017.
- Mirabbasi, R., Kisi, O., Sanikhani, H., & Meshram, S. G. (2019). Monthly long-term rainfall estimation in Central India using M5Tree, MARS, LSSVR, ANN and GEP models. Neural Computing and Applications, 31(10), 6843-6862.
- Misiti, M., Misiti, Y., Oppenheim, G., & Poggi, J. M.(1996). Wavelet Toolbox for Use with Matlab. The Mathworks, Inc.: Natick, Massachusetts, USA.
- Montaseri, M., & Ghavidel, S. (2014). River Flow Forecasting by Using Soft computing. Water and Soil, 28(2), 394-405. (In Persian).
- Mukhopadhyay, B., & Khan, A. (2015). Boltzmann–Shannon entropy and river flow stability within Upper Indus Basin in a changing climate. International Journal of River Basin Management, 13(1), 87-95.
- Nayak, P. C., Sudheer, K. P., Rangan, D. M., & Ramasastri, K. S. (2004). A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291(1-2), 52-66.
- Pai, P.F., & Hong, W.C. (2007). A recurrent support vector regression model in rainfall forecasting. Hydrological Process, 21, 819-827.
- Pham, L. T., Luo, L., & Finley, A. O. (2020). Evaluation of Random Forest for short-term daily streamflow forecast in rainfall and snowmelt driven watersheds. Hydrology and Earth System Sciences Discussions, 1-33.
- Phillies, G. D. (1996). Wavelets: a new alternative to Fourier transforms. Computers in Physics, 10(3), 247-252.
- Polikar, R. (1996). Fundamental concepts & an overview of the wavelet theory. The Wavelet Tutorial Part I, Rowan University, College of Engineering Web Servers, 15.
- Polikar, R. (1999). Fundamental concepts and overview of the wavelet theory: the wavelet tutorial–part I. Rowan University, College of Engineering Web Servers, 22.
- Quinlan, J. R. (2014). C4. 5: programs for machine learning. Elsevier. San Mateo, CA: Morgan Kaurmann. 303 pp.
- Roushangar, K., & Ghasempour, R. (2020). Monthly precipitation prediction improving using the integrated model based on kernel-wavelet and complementary ensemble empirical mode decomposition. Amirkabir Journal of Civil Engineering, 52(10), 2649-2660.
- Saraiva, S. V., de Oliveira Carvalho, F., Santos, C. A. G., Barreto, L. C., & Freire, P. K. D. M. M. (2021). Daily streamflow forecasting in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrapping. Applied Soft Computing, 102, 107-121.
- Saray, M. H., Eslamian, S. S., Klöve, B., & Gohari, A. (2020). Regionalization of potential evapotranspiration using a modified region of influence. Theoretical and Applied Climatology, 140(1), 115-127.
- Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review, 5(1), 3-55.
- Shataee, S., Kalbi, S., Fallah, A., & Pelz, D. (2012). Forest attribute imputation using machine-learning methods and ASTER data: comparison of k-NN, SVR and random forest regression algorithms. International Journal of Remote Sensing, 33(19), 6254-6280.
- Tang, T., Liang, Z., Hu, Y., Li, B., & Wang, J. (2020). Research on flood forecasting based on flood hydrograph generalization and random forest in Qiushui River basin, China. Journal of Hydroinformatics, 22(6), 1588-1602.
- Vapnik, V.N. (1998). Statistical Learning Theory. Wiley, New York.
- Wang, J., Bao, W., Gao, Q., Si, W., & Sun, Y. (2021). Coupling the Xinanjiang model and wavelet-based random forests method for improved daily streamflow simulation. Journal of Hydroinformatics, 23(3), 589-604.
- Wang, W., & Ding, J. (2003). Wavelet network model and its application to the prediction of hydrology. Nature and Science, 1(1), 67-71.
|