- عباسزاده تهرانی، نادیا؛ مروتی، آذر؛ خانبانی، سارا؛ و جانعلیپور، میلاد (1400). «ارزیابی عملکرد پردازش تکزمانه و چندزمانۀ تصاویر ماهوارۀ لندست 8 مبتنی بر طبقهبندیکنندههای ماشین بردار پشتیبان و جنگل تصادفی در پایش آتشسوزی جنگلها»، مدیریت مخاطرات محیطی، دورۀ 8، شمارۀ 2، صفحۀ135-119.
- Beynon, M.; Curry, B.; & Morgan, P. (2000). The Dempster-Shafer theory of evidence: An alternative approach to multicriteria decision modelling, Omega. 28, pp: 37-50. 10.1016/S0305-0483(99)00033-X.
- Bui, D.; Hoang, N-D.; & Samui, P. (2019). “Spatial Pattern Analysis and Prediction of Forest Fire Using New Machine Learning Approach of Multivariate Adaptive Regression Splines and Differential Flower Pollination Optimization: A case study at La Cai province (Vietnam)”, Journal of Environmental Management, 10.1016/j.jenvman.2019.01.108.
- Bukhori, S. (2018). Forest Fire Model, 10.5772/intechopen.72591.
- Castillo Soto, M. (2012). “The identification and assessment of areas at risk of forest fire using fuzzy methodology,” Applied Geography, 35, pp: 199–207. 10.1016/j.apgeog.2012.07.001.
- Castillo Soto, M.; & Silva, F. (2015). “Quantitative analysis of forest fire extinction efficiency”, Forest Systems, 24. 2171-9845. 10.5424/fs/2015242-06644.
- Dempster, A. (2008). Upper and Lower Probabilities Induced by a Multivalued Mapping, 10.1007/978-3-540-44792-4_3.
- Finney, M. (2005). “The challenge of quantitative risk analysis for wildland fire”, Forest Ecology and Management, 211, pp: 97-108. 10.1016/j.foreco.2005.02.010.
- González, C.; Castillo Soto, M.; Chevesich, P.; & Barrios, J. (2017). “Dempster-Shafer theory of evidence: A new approach to spatially model wildfire risk potential in central Chile”, The Science of the total environment, pp: 613-614. 1024-1030. 10.1016/j.scitotenv.2017.09.105.
- González-Sanchis, M.; Ruiz-Pérez, G.; Del Campo, A.; García-Prats, A.; Francés, F.; & Lull, C. (2019). “Managing low productive forests at catchment scale: Considering water, biomass and fire risk to achieve economic feasibility”, Journal of Environmental Management, 231. pp: 653-665. 10.1016/j.jenvman.2018.10.078.
- Khan, M.; & Anwar, S. (2019). “Paradox Elimination in Dempster–Shafer Combination Rule with Novel Entropy Function: Application in Decision-Level Multi-Sensor Fusion”, Sensors, 19. 4810. 10.3390/s19214810.
- Monjarás-Vega, N.; Briones-Herrera, C.; Vega-Nieva, D.; Calleros-Flores, E.; Corral-Rivas, J. J.; López Serrano, P.; Pompa-García, M.; Rodrı́guez-Trejo, D.; Carrillo-pzrra, A.; González-Cabán, A.; Alvarado, E.; & Jolly, W. (2020). “Predicting forest fire kernel density at multiple scales with geographically weighted regression in Mexico”, Science of The Total Environment, 718. 137313. 1016/j.scitotenv.2020.137313.
- Murthy, K.; Sinha, S.; Kaul, R., & Vaidyanathan, S. (2019). “A fine-scale state-space model to understand drivers of forest fires in the Himalayan foothills”, Forest Ecology and Management, 432. pp: 902–911. https://doi.org/10.1016/j.foreco.2018.10.009
- Naderpour, Mohsen; Rizeei, Hossein; Khakzad, Nima; & Pradhan, Biswajeet. (2019). “Forest Fire Induced Natech Risk Assessment: A Survey of Geospatial Technologies”, Reliability Engineering & System Safety, 191. 106558. 10.1016/j.ress.2019.106558.
- Novković, Ivan; Goran, B.; Markovic, Goran; Lukic, Djordje; Dragicevic, Slavoljub; Milosevic, Marko; Djurdjic, Snezana; Samardžić, Ivan; Lezaic, Tijana; & Tadic, Marija. (2021). “GIS-Based Forest Fire Susceptibility Zonation with IoT Sensor Network Support: Case Study-Nature Park Golija”, Sensors (Basel, Switzerland). 21. 10.3390/s21196520.
- Ngoc-Thach, N.; Dang Ngo, T.; Pham, X-C.; Nguyen, H-Th.; Bui, H.; Hoang, N-D.; & Bui, D. (2018). “Spatial Pattern Assessment of Tropical Forest Fire Danger at Thuan Chau area (Vietnam) using GIS-Based Advanced Machine Learning Algorithms: A comparative study”, Ecological Informatics, 46. 10.1016/j.ecoinf.2018.05.009.
- Pique, M.; Olabarria, J.; & Reynolds, K. (2019). Strategic and tactical planning to improve suppression efforts against large forest fires in the Catalonia region of Spain, Forest Ecology and Management, 432. 612-622. 10.1016/j.foreco.2018.09.0.
- Pourghasemi, Hamid (2015). “GIS-based forest fire susceptibility mapping in Iran: A comparison between evidential belief function and binary logistic regression models”, Scandinavian Journal of Forest Research, 31. 10.1080/02827581.2015.1052750.
- Preisler, H.; & Ager, A. (2013). Forest-fire models. Encyclopedia of Environmetrics. 3.
- Rathman, J.; Yang, Ch.; & Zhou, H. (2018). “Dempster-Shafer theory for combining in silico evidence and estimating uncertainty in chemical risk assessment”, Computational Toxicology, 6. 10.1016/j.comtox.2018.03.001.
- Razavi-Termeh, Seyed Vahid; Sadeghi-Niaraki, Abolghasem; & Choi, Soo-Mi (2020). “Ubiquitous GIS-Based Forest Fire Susceptibility Mapping Using Artificial Intelligence Methods”, Remote Sensing, 12. 1689. 10.3390/rs12101689.
- Sentz, K.; & Ferson, S. (2002). Combination of Evidence in Dempster-Shafer Theory. 10.2172/800792.
- Srivastava, R.; Mock, Th.; & Gao, L. (2011). “The Dempster‐Shafer Theory: An Introduction and Fraud Risk Assessment Illustration”, Australian Accounting Review, 21. 282 - 291. 10.1111/j.1835-2561.2011.00135.x.
- Sivrikaya, Fatih; & Kucuk, Omer (2021). “Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region”, Ecological Informatics, 68. 101537. 10.1016/j.ecoinf.2021.101537.
- Valizadeh kamran, K.; Omrani, K.; & Khosroshahi, S. (2014). “Forest Fire Risk Assessment Using MultiCriteria Analysis: A Case Study Kaleybar Forest”.
- Wang, J.; Qiao, K.; Zhang, Zh.; & Xiang, F. (2017). “A new conflict management method in Dempster–Shafer theory”, International Journal of Distributed Sensor Networks, 13. 155014771769650. 10.1177/1550147717696506.
- Zadeh, Lotfi; & Ralescu, Anca (2013). On the Combinality of Evidence in the Dempster-Shafer Theory.
- Zhao, Pengcheng; Zhang, Fuquan; Lin, Haifeng; & xu, Shuwen. (2021). “GIS-Based Forest Fire Risk Model: A Case Study in Laoshan National Forest Park”, Remote Sensing, 13. 3704. 10.3390/rs13183704.
- Zheng, Zhong; Gao, Yanghua; Yang, Qingyuan; Zou, Bin; Xu, Yongjin; Chen, Yanying; Yang, Shiqi; Wang, Yongqian; & Wang, Zengwu (2020). “Predicting forest fire risk based on mining rules with ant-miner algorithm in cloud-rich areas”, Ecological Indicators, 118. 106772. 10.1016/j.ecolind.2020.106772.
|