- آقابابایی، م.؛ ابراهیمی، ع. و طهماسبی، پ. (1397). مقایسة شاخصهای گیاهی و تبدیل تسلدکپ در برآورد میزان کربن آلی خاک با استفاده از تصاویر سنجندة لندست 8 -OLI در مراتع نیمهاستپی، سنجش از دور و سامانة اطلاعات جغرافیایی در منابع طبیعی، 9(3): 85-99.
- پورغلام آمیجی، م.؛ انصاری قوجقار، م.؛ بذرافشان، ج.؛ لیاقت، ع. و عراقینژاد، ش. (1399). مقایسة عملکرد مدلهای سری زمانی SARIMA و Holt-Winters با روشهای هوش مصنوعی در پیش بینی طوفانهای گردوغبار (مطالعة موردی: استان سیستان و بلوچستان)، پژوهشهای جغرافیای طبیعی، 52(4): 567-587.
- حیدری بنی، م.؛ یزدانپناه، ح. و محنتکش، ع. (1397). بررسی اثرات تغییر اقلیم بر عملکرد و مراحل فنولوژیکی کلزا (مطالعۀ موردی: استان چهارمحال و بختیاری)، پژوهشهای جغرافیای طبیعی، 50(2): 373-389.
- رایگانی، ب.؛ ارزانی، ح.؛ حیدری علمدارلو، ا. و مقدمی، م. م. (1398). کاربرد سنجش از دور بهمنظور ارزیابی تغییر اقلیم بر تولید و فنولوژی گیاهان (منطقة مورد مطالعه: استان تهران)، مرتع، 13(3): 450-460.
- رایگانی، ب. (1398). شناسایی کانونهای بالقوة تولید گرد و غبار با استفاده از دادههای سنجش از دور (مطالعة موردی: استان البرز)، مخاطرات محیط طبیعی، 8(20): 1-20.
- ریگی، م.؛ پیری صحراگرد، ح.؛ دهمرده قلعهنو، م. و شهرکی، ا. (1397). ارزیابی تغییرات کاربری اراضی با استفاده از دادههای سنجش از دور (مطالعة موردی: حوضة آبخیز نوکآباد، شهرستان خاش)، جغرافیا، 16(59): 191-204.
- زنگنه، م.؛ صفایی، م. ج. و سمیعی، م. (1398). کنکاشی بر رویکرد توانمندسازی جهت ساماندهی سکونتگاههای غیررسمی (نمونة موردی: شهر تربت حیدریه)، جغرافیا، 17(62): 191-205.
- فاطمی م ، رضائی ع؛ 1393 ،مبانی سنجش از دور، انتشارات آزاده، تهران، چاپ چهارم، ص296.
- قائمی، م.؛ ثنایینژاد، س. ح.؛ آستارایی، ع. و میرحسینی، پ. (1389). بررسی و مقایسة شاخصهای مختلف گیاهی با استفاده از تصاویر ماهوارهای ETM برای مطالعات پوشش گیاهی دشت نیشابور، خراسان رضوی، نشریة پژوهشهای زراعی ایران، 8(1): 128-137.
- قمقامی، م.؛ قهرمان، ن.؛ قربانی، خ. و ایراننژاد، پ. (1396). کاربرد تصاویر ماهوارهای چندزمانه در بهبود دقت مدلهای پیشیابی فنولوژی ذرت، تحقیقات آب و خاک ایران، 48(1): 11-24.
- Atkinson, P. M.; Jeganathan, C.; Dash, J. and Atzberger, C. (2012). Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology, Remote sensing of environment, 123, 400-417.
- Baig, M. H. A.; Zhang, L.; Shuai, T. and Tong, Q. (2014). Derivation of a tasseled cap transformation based on Landsat 8 at-satellite reflectance, Remote Sensing Letters, 5(5): 423-431.
- Beck, P. S.; Atzberger, C.; Høgda, K. A.; Johansen, B. and Skidmore, A. K. (2006). Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI, Remote sensing of Environment, 100(3): 321-334.
- Bradley, B. A.; Jacob, R. W.; Hermance, J. F. and Mustard, J. F. (2007). A curve fitting procedure to derive inter-annual phenologies from time series of noisy satellite NDVI data, Remote sensing of environment, 106(2): 137-145.
- Cai, Z.; Jönsson, P.; Jin, H. and Eklundh, L. (2017). Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data, Remote Sensing, 9(12): 1-17.
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B. and Eklundh, L. (2004). A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter, Remote sensing of Environment, 91(3-4): 332-344.
- Chen, W.; Foy, N.; Olthof, I.; Latifovic, R.; Zhang, Y.; Li, J. ... and Stewart, H. M. (2013). Evaluating and reducing errors in seasonal profiles of AVHRR vegetation indices over a Canadian northern national park using a cloudiness index, International Journal of Remote Sensing, 34(12): 4320-4343.
- Cheng, J., and Liang, S. (2014), Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product, J. Geophys. Res. Atmos., 119, 614– 634,
- Cong, N.; Wang, T.; Nan, H.; Ma, Y.; Wang, X.; Myneni, R. B. and Piao, S. (2013). Changes in satellite‐derived spring vegetation green‐up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis, Global change biology, 19(3): 881-891.
- Crist, E. P. and Cicone, R. C. (1984). Application of the tasseled cap concept to simulated thematic mapper data, Photogrammetric engineering and Remote sensing, 50(3): 343-352.
- Dymond, C. C.; Mladenoff, D. J. and Radeloff, V. C. (2002). Phenological differences in Tasseled Cap indices improve deciduous forest classification, Remote sensing of environment, 80(3): 460-472.
- Eklundha, L. and Jönsson, P. (2017). TIMESAT 3.3 with seasonal trend decomposition and parallel processing Software Manual, Lund and Malmo University, Sweden. Retrieved from http://www.nateko.lu.se/TIMESAT/ 2017- 05-29.
- Gao, F.; Morisette, J. T.; Wolfe, R. E.; Ederer, G.; Pedelty, J.; Masuoka, E. ... and Nightingale, J. (2008). An algorithm to produce temporally and spatially continuous MODIS-LAI time series, IEEE Geoscience and Remote Sensing Letters, 5(1): 60-64.
- Geng, L.; Ma, M.; Wang, X.; Yu, W.; Jia, S. and Wang, H. (2014). Comparison of eight techniques for reconstructing multi-satellite sensor time-series NDVI data sets in the Heihe river basin, China, Remote Sensing, 6(3): 2024-2049.
- Gómez, C.; Wulder, M. A.; White, J. C.; Montes, F. and Delgado, J. A. (2012). Characterizing 25 years of change in the area, distribution, and carbon stock of Mediterranean pines in Central Spain, International Journal of Remote Sensing, 33(17): 5546-5573.
- Goward, S. N.; Markham, B.; Dye, D. G.; Dulaney, W. and Yang, J. (1991). Normalized difference vegetation index measurements from the Advanced Very High Resolution Radiometer, Remote sensing of environment, 35(2-3): 257-277.
- Guo, L.; An, N. and Wang, K. (2016). Reconciling the discrepancy in ground‐and satellite‐observed trends in the spring phenology of winter wheat in China from 1993 to 2008, Journal of Geophysical Research: Atmospheres, 121(3): 1027-1042.
- Han, H.; Bai, J.; Ma, G. and Yan, J. (2020). Vegetation Phenological Changes in Multiple Landforms and Responses to Climate Change, ISPRS International Journal of Geo-Information, 9(2) 111.
- Hanes, J. M.; Liang, L. and Morisette, J. T. (2013). Land surface phenology, In Biophysical applications of satellite remote sensing, Springer, Berlin, Heidelberg.
- Hird, J. N. and McDermid, G. J. (2009). Noise reduction of NDVI time series: An empirical comparison of selected techniques, Remote Sensing of Environment, 113(1): 248-258.
- Jonsson, P. and Eklundh, L. (2002). Seasonality extraction by function fitting to time-series of satellite sensor data, IEEE transactions on Geoscience and Remote Sensing, 40(8): 1824-1832.
- Jönsson, P. and Eklundh, L. (2004). TIMESAT—a program for analyzing time-series of satellite sensor data, Computers & geosciences, 30(8): 833-845.
- Kandasamy, S. and Fernandes, R. (2015). An approach for evaluating the impact of gaps and measurement errors on satellite land surface phenology algorithms: Application to 20 years NOAA AVHRR data over Canada, Remote Sensing of Environment, 164: 114-129.
- Karkauskaite, P.; Tagesson, T. and Fensholt, R. (2017). Evaluation of the plant phenology index (PPI), NDVI and EVI for start-of-season trend analysis of the Northern Hemisphere boreal zone, Remote Sensing, 9(5): 1:21
- Kowalski, K.; Senf, C.; Hostert, P. and Pflugmacher, D. (2020). Characterizing spring phenology of temperate broadleaf forests using Landsat and Sentinel-2 time series, International Journal of Applied Earth Observation and Geoinformation, 92: :118.
- Lara, B. and Gandini, M. (2016). Assessing the performance of smoothing functions to estimate land surface phenology on temperate grassland, International Journal of Remote Sensing, 37(8): 1801-1813.
- Ma, X.; Huete, A.; Yu, Q.; Coupe, N. R.; Davies, K.; Broich, M. ... and Eamus, D. (2013). Spatial patterns and temporal dynamics in savanna vegetation phenology across the North Australian Tropical Transect, Remote sensing of Environment, 139: 97-115.
- Melaas, E. K.; Friedl, M. A. and Zhu, Z. (2013). Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM/ETM+ data, Remote Sensing of Environment, 132: 176-185.
- Richardson, A. D.; Anderson, R. S.; Arain, M. A.; Barr, A. G.; Bohrer, G.; Chen, G. ... and Xue, Y. (2012). Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis, Global Change Biology, 18(2): 566-584.
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N. and Ohno, H. (2005). A crop phenology detection method using time-series MODIS data, Remote sensing of environment, 96(3-4): 366-374.
- Samarawickrama, U.; Piyaratne, D. and Ranagalage, M. (2017). Relationship between NDVI with Tasseled cap Indices: A Remote Sensing based Analysis, IJIRT, 3(12): 13-19.
- Shao, Y.; Lunetta, R. S.; Wheeler, B.; Iiames, J. S. and Campbell, J. B. (2016). An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multi-temporal data, Remote Sensing of Environment, 174: 258-265.
- St Peter, J.; Hogland, J.; Hebblewhite, M.; Hurley, M. A.; Hupp, N. and Proffitt, K. (2018). Linking phenological indices from digital cameras in Idaho and Montana to MODIS NDVI, Remote Sensing, 10(10) 1601:1612.
- Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation, Remote sensing of Environment, 8(2): 127-150.
- White, M. A.; de Beurs, K. M.; Didan, K.; Inouye, D. W.; Richardson, A. D.; Jensen, O. P. ... and Lauenroth, W. K. (2009). Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006, Global Change Biology, 15(10): 2335-2359.
- You, X.; Meng, J.; Zhang, M. and Dong, T. (2013). Remote sensing-based detection of crop phenology for agricultural zones in China using a new threshold method, Remote Sensing, 5(7): 3190-3211.
- Zhang, X.; Schaaf, C. B.; Friedl, M. A.; Strahler, A. H.; Gao, F. and Hodges, J. C. (2002). MODIS tasseled cap transformation and its utility, In IEEE International Geoscience and Remote Sensing Symposium, Vol. 2, PP. 1063-1065.
- Zhu, L. and Meng, J. (2015). Determining the relative importance of climatic drivers on spring phenology in grassland ecosystems of semi-arid areas, International journal of biometeorology, 59(2): 237-248.
- Aghababaei, M.; Ebrahimi, A.; Tahmasebi, P. (2018). Comparison of vegetation indices and Tassled cap Transformation in estimating soil organic carbon content using Landsat 8 -OLI sensor images in semi-steppe rangelands, Remote Sensing and Geographic Information System in Natural Resources, 9(3): 85-99.
- Ghamghami, M.; Ghahreman, N.; Ghorbani, K. and Irannejad, P. (2017). Application of Multi-Time Satellite Images in Improving the Accuracy of Corn Phenology Prediction Models, Iranian Soil and Water Research, 48 (1): 11-24.
- Heydari Beni, M.; Yazdanpanah, H. and Mehnatkesh, A. (2018). Investigating the effects of climate change on canola yield and phenological stages (Case study: Chaharmahal and Bakhtiari province), Natural Geography Research, 50 (2): 373-389.
- Pourghlam Amiji, M.; Ansari Qujqar, M.; Bazrafshan, J.; Liaqat, A. and Iraqi Nejad, Sh. (2020). Comparison of the performance of SARIMA and Holt-Winters time series models with artificial intelligence methods in predicting dust storms (Case study: Sistan and Baluchestan province), Natural Geography Research, 52 (4): 567-587.
- Qaemi, M.; Sanaei Nejad, S. H.; Astarai, A. and Mir Hosseini, P. (2010). Study and comparison of different vegetation indices using ETM satellite images for vegetation studies in Neishabour plain, Khorasan Razavi, Iranian Journal of Crop Research, 8 (1): 128-137.
- Raiegani, B.; Arzani, H.; Heidari Alamdarloo, A. and Moghaddami, M. M. (2019). Application of remote sensing to evaluate climate change on plant production and phenology (study area: Tehran province), Range, 13(3): 450-460.
- Raiegani, B. (2019). Identification of potential centers of dust production using remote sensing data (Case study: Alborz province), Natural hazards, 8 (20): 1-20.
- Rigi, M.; Piri Sahragard, H., Dehmardeh Qaleh, M. and Shahraki, A. (2018). Evaluation of Land Use Changes Using Remote Sensing Data (Case Study: Nokabad Watershed, Khash County), Geography, 16(59): 191-204.
- Zanganeh, M.; Safaei, M. J. and Samiei, M. (2019). Research on the empowerment approach for organizing informal settlements (Case study: Torbat-e Heydariyeh), Geography, 17(62): 191-205.
|