- Ahmadlou, M., Karimi, M., Alizadeh, S., Shirzadi, A., Parvinnejhad, D., Shahabi, H., & Panahi, M. (2018). Flood susceptibility assessment using integration of Adaptive Network-Based Fuzzy Inference System (ANFIS) and Biogeography-Based Optimization (BBO) and BAT Algorithms (BA). Geocarto International, 34(11), 1252-1272.
- Alam, Z., Zhang, C., & Samali, B. (2020). Influence of seismic incident angle on response uncertainty and structural performance of tall asymmetric structure. The Structural Design of Tall and Special Buildings, 29(12), 1750.
- Arabameri, A., Rezaei, K., Cerda, A., Conoscenti, C., & Kalantari, Z. (2019). A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran. Science of the Total Environment, 660, 443-458.
- Arabgol, R., Sartaj, M., & Asghari, K. (2016). Predicting nitrate concentration and its spatial distribution in groundwater resources using support vector machines (SVMs) model. Environmental Modeling & Assessment, 21(1), 71-82.
- Azareh, A., Rafiei Sardooi, E., Choubin, B., Barkhori, S., Shahdadi, A., Adamowski, J., & Shamshirband, S. (2019). Incorporating multi-criteria decision-making and fuzzy-value functions for flood susceptibility assessment. Geocarto International, 1-21.
- Chapi, K., Singh, V.P., Shirzadi, A., Shahabi, H., Tien Bui, D., Pham, B.T., & Khosravi, K. (2017). A novel hybrid artificial intelligence approach for flood susceptibility assessment. Environmental Modelling & Software, 95, 229-245.
- Chen, W., Hong, H., Li, S., Shahabi, H., Wang, Y., Wang, X., & Ahmad, B.B. (2019). Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. Journal of Hydrology, 575, 864-873.
- Chen, W., Li, Y., Xue, W., Shahabi, H., Li, S., Hong, H., & Ahmad, B.B. (2020). Modeling flood susceptibility using data-driven approaches of naïve bayes tree, alternating decision tree and random forest methods. Science of the Total Environment, 701,134979.
- Choubin, B., Moradi, E., Golshan, M., Adamowski, J., Sajedi-Hosseini, F., & Mosavi, A. (2019). An ensemble prediction of flood susceptibility using multivariate discriminant analysis classification and regression trees and support vector machines. Science of the Total Environment, 651(Pt2), 2087-2096.
- Dat, T.T., Tri, D.Q., Truong, D.D., & Hoa, N.N. (2019). Application of mike flood model in inundation simulation with the dam-break scenarios: a case study of Dak-Drinh Reservoir in Vietnam. International Journal of Earth Sciences, 12, 60-70.
- de Santana, F.B., de Souza, A.M., & Poppi, R.J. (2018). Visible and near infrared spectroscopy coupled to random forest to quantify some soil quality parameters. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 191, 454-462.
- Eftekhari, M., Eslaminezhad, S. A., Haji Elyasi, A., & Akbari, M. (2021a). Predicting Groundwater Potential Areas Using Hybrid Artificial Intelligence Methods (Case study: Birjand Plain). Iranian Journal of Soil and Water Research. (In persian).
- Eftekhari, M., Eslaminezhad, S. A., Akbari, M., DadrasAjirlou, Y., & Elyasi, A. H. (2021b). Assessment of the Potential of Groundwater Quality Indicators by Geostatistical Methods in Semi-arid Regions. Journal of Chinese Soil and Water Conservation, 52(3), 158-167.
- Eftekhari, M., Eslaminezhad, S., Haji Elyasi, A., & Akbari, M. (2021c). Development of DRASTIC model using artificial intelligence on the potential of aquifer contamination in semi-arid regions. Iranian Journal of Ecohydrology, 8(3), 651-665.
- Eslaminezhad, S., Eftekhari, M., Mahmoodizadeh, S., Akbari, M., & Haji Elyasi, A. (2021a). Evaluation of Tree-Based Artificial Intelligence Models to Predict Flood Risk using GIS. Iran-Water Resources Research, 17(2), 174-189. (In persian).
- Eslaminezhad, S. A., Omarzadeh, D., Eftekhari, M., & Akbari, M. (2021b). Development af a Data-Driven Model to Predict Landslide Sensitive Areas. Geographia Technica, 16(1).
- Gao, W., Moayedi, H., & Shahsavar, A. (2019). The feasibility of genetic programming and ANFIS in prediction energetic performance of a building integrated photovoltaic thermal (BIPVT) system. Sol Energy, 183, 293-305.
- Ghorbanzadeh, O., Blaschke, T., Aryal, J., & Gholaminia, K. (2020). A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping. Journal of Spatial Science, 65(3), 401-417.
- Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S.R., Tiede, D., & Aryal, J. (2019). Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sensing, 11(2), 196.
- Giang, P.Q., Trang, N.T.M., Anh, T.T.H., & Binh, N.T. (2020). Prediction of economic loss of rice production due to flood inundation under climate change impacts using a modeling approach: A case study in Ha Tinh Province, Vietnam. Climate Change, 6, 52-63.
- Hong, H., Tsangaratos, P., Ilia, I., Liu, , Zhu, A.X., & Chen, W. (2018). Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China. Science of the Total Environment, 625, 575-588.
- Jancewicz, K., Migoń, P., & Kasprzak, M. (2019). Connectivity patterns in contrasting types of tableland sandstone relief revealed by Topographic Wetness Index. Science of the Total Environment, 656, 1046-1062.
- Jang, J.S. (1993). ANFIS: adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685.
- Johann, G., & Leismann, M. (2017). How to realise flood risk management plans efficiently in an urban area–the S eseke project. Journal of Flood Risk Management, 10(2), 173-181.
- Kalantari, Z., Ferreira, C.S.S., Walsh, R.P.D., Ferreira, A.J.D., & Destouni, G. (2017). Urbanization development under climate change: hydrological responses in a peri-urban Mediterranean catchment. Land Degradation & Development, 28 (7), 2207-2221.
- Kanani-Sadat, Y., Arabsheibani, R., Karimipour, F., & Nasseri, M. (2019). A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method. Journal of Hydrology, 572, 17-31
- Khosravi, K., Nohani, E., Maroufinia, E., & Pourghasemi, H.R. (2016). A GIS-based flood susceptibility assessment and its mapping in Iran: A comparison between frequency ratio and weights-ofevidence bivariate statistical models with multi-criteria decision-making technique. Natural Hazards, 83(2), 947-987.
- Kocaman, S., Tavus, B., Nefeslioglu, H.A., Karakas, G., & Gokceoglu, C. (2020). Evaluation of floods and landslides triggered by a meteorological catastrophe (Ordu, Turkey, August 2018) using optical and radar data. Geofluids, 2020, 1-18.
- Liu, R., Chen, Y., Wu, J., Gao, L., Barrett, D., Xu, T., Li, L., Huang, C., & Yu, J. (2016). Assessing spatial likelihood of flooding hazard using naïve Bayes and GIS: A case study in Bowen Basin, Australia. Stochastic Environmental Research and Risk Assessment, 30(6),1575-1590.
- Manap, M.A., Nampak, H., Pradhan, B., Lee, S., Sulaiman, W.N.A., & Ramli, M.F. (2014). Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arabian Journal of Geosciences, 7(2), 711-724.
- Markus, M., Angel, J., Byard, G., McConkey, S., Zhang, C., Cai, X., Notaro, M., & Ashfaq, M. (2018). Communicating the impacts of projected climate change on heavy rainfall using a weighted ensemble approach. Journal of Hydrologic Engineering, 23(4), 04018004.
- Mojaddadi, H., Pradhan, B., Nampak, H., Ahmad, N., & Ghazali, A. H. B. (2017). Ensemble machine-learning based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomatics, Natural Hazards and Risk, 8(2), 1080-1102.
- Nachappa, T.G., Piralilou, S.T., Gholamnia, K., Ghorbanzadeh, O., Rahmati, O., & Blaschke, T. (2021). Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. Journal of hydrology, 125275, 590.
- Pham, B.T., Tien Bui, D., & Prakash, I. (2017). Landslide susceptibility assessment using bagging ensemble based alternating decision trees, logistic regression and J48 decision trees methods: a comparative study. Geotechnical and Geological Engineering, 35(6), 2597-2611.
- Quiroz, C., Mariun, N., Mehrjou, M.R., Izadi, M., Misron, N., & Mohd Radzi, M.A. (2018). Fault detection of broken rotor bar in LS-PMSM using random forests. Measurement, 116, 273-280.
- Rahmati, O., Pourghasemi, H.R., & Zeinivand, H. )2016(. Flood susceptibility mapping using frequency ratio and weights-of-evidence models in the Golastan Province, Iran. Geocarto International, 31(1), 42-70.
- Rahmati, O., & Pourghasemi, H. R. (2017). Identification of critical flood prone areas in data-scarce and ungauged regions: A comparison of three data mining models. Water Resources Management, 31(5), 1473-1487
- Razavi Termeh, V., Kornejady, A., Pourghasemi, H.R., & Keesstra, S. (2018). Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of the Total Environment, 615, 438-451.
- Saedi, A., Saghafian, B., & Moazami, S. (2020). Uncertainty of flood forecasts via ensemble precipitation forecasts of seven NWP models for Spring 2019 Golestan Flood. Iran-Water Resources Research, 16(1), 347-359. (In Persian).
- Shahid, S., Wang, X.J., Harun, S.B., Shamsudin, S.B., Ismail, T., & Minhans, A. (2016). Climate variability and changes in the major cities of Bangladesh: observations, possible impacts and adaptation. Regional Environmental Change, 16(2), 459-471.
- Siahkamari, S., Haghizadeh, A., Zeinivand, H., Tahmasebipour, N., & Rahmati, O. (2018). Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models. Geocarto international, 33(9), 927-941.
- Tehrany, M.S., Pradhan, B., & Jebur, M.N. (2013). Spatial prediction of flood susceptible areas using rule based Decision Tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69-79.
- Tien Bui, D., Pradhan, B., Lofman, O., & Revhaug, I. (2012). Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naive Bayes Models. Mathematical Problems in Engineering, 2012, 1-26.
- Tien Bui, D., Pradhan, B., Nampak, H., Bui, Q.T., Tran, Q.A., & Nguyen, Q.P. (2016). Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibilitgy modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology, 540, 317-330.
- Wang, X., & Liu, H. (2019). A Knowledge-and Data-Driven Soft Sensor Based on Deep Learning for Predicting the Deformation of an Air Preheater Rotor. IEEE Access, 7,159651-159660.
- Zeraatkar, Z., & Hassanpour, F., (2016), Simulation of BirjandUrban FloodUsing HEC-RAS and ARC-GIS. Watershed Management Research Journal, 29(3), 41-56. (In persian).
- Ziaiian Firouz Abadi, P., Badragh Nejad, A., Sarli, R., & Babaie, M. (2020). Measurement and identification of areas susceptible to flood spreading from the viewpoint of geological formations in Birjand watershed using RS / GIS. researches in Geographical Sciences, 20 (57),1-24. (In persian).
- Zhang, C., & Wang, H. (2019). Robustness of the active rotary inertia driver system for structural swing vibration control subjected to multi-type hazard excitations. Applied Sciences, 9(20), 4391.
- Zhao, G., Pang, B., Xu, Z., Yue, J., & Tu, T. (2018). Mapping flood susceptibility in mountainous areas on a national scale in China. Science of the Total Environment, 615, 1133-1142.
|