- Ashar Jahanshahi, Zareabyaneh, H., Naghavi, H., & Eslami, A. (2013). Assessment of influence of installation depth of emitter with same discharges on moisture distribution in subsurface drip irrigation system and simulation with HYDRUS-2D model. Irrigation and Water Engineering, 3(2), 101-113. (In Persian).
- Arbat, G, Puig-Bargues, J., Barragan, J., Bonany, J., & De Cartagena, F. R. (2008). Monitoring soil water status for micro-irrigation management versus modelling approach. Biosystems Engineering, 100(2), 286-296.
- Arbat, Gerard, Cufí, S., Duran-Ros, M., Pinsach, J., Puig-Bargués, J., Pujol, J., & Ramírez de Cartagena, F. (2020). Modeling approaches for determining dripline depth and irrigation frequency of subsurface drip irrigated rice on different soil textures. Water, 12(6), 1724.
- Ataee, A., Akbari, M., Neyshabouri, M. R., Zarehagi, D., & Onnabi Milani, A. (2019). Pistachio response to water and salinity distribution in surface and subsurface drip irrigation systems. Iranian Journal of Irrigation & Drainage, 13(1), 115–128.
- Bainbridge, D. A. (2001). Buried clay pot irrigation: a little known but very efficient traditional method of irrigation. Agricultural Water Management, 48(2), 79-88.
- Camp, C. R., & Sadler, E. J. (2002). Irrigation, deep tillage, and nitrogen management for a corn–soybean rotation. Transactions of the ASAE, 45(3), 601.
- Canone, D., Previati, M., & Ferraris, S. (2017). Evaluation of stemflow effects on the spatial distribution of soil moisture using TDR monitoring and an infiltration model. Journal of Irrigation and Drainage Engineering, 143(1), 4016075.
- Cook, F. J., Fitch, P., Thorburn, P. J., Charlesworth, P. B., & Bristow, K. L. (2006). Modelling trickle irrigation: comparison of analytical and numerical models for estimation of wetting front position with time. Environmental Modelling & Software, 21(9), 1353-1359.
- Elmaloglou, S., & Diamantopoulos, E. (2009). Simulation of soil water dynamics under subsurface drip irrigation from line sources. Agricultural Water Management, 96(11), 1587-1595.
- Elnesr, M. N., & Alazba, A. A. (2017). Simulation of water distribution under surface dripper using artificial neural networks. Computers and Electronics in Agriculture, 143, 90-99.
- Feddes, R. A., Kowalik, P. J., & Zaradny, H. (1978). Water uptake by plant roots. Simulation of field water use and crop yield. 16-30. New York: Wiley.
- Feike, T., Khor, L. Y., Mamitimin, Y., Ha, N., Li, L., Abdusalih, N., Xiao, H., & Doluschitz, R. (2017). Determinants of cotton farmers’ irrigation water management in arid Northwestern China. Agricultural Water Management, 187, 1-10.
- Hedayati, A., & Kakavand, R. (2012). Climatic zoning of Qazvin Province. Nivar, 36(77-76), 59-66. (In Persian).
- Kandelous, M. M., Šimůnek, J., Van Genuchten, M. T., & Malek, K. (2011). Soil water content distributions between two emitters of a subsurface drip irrigation system. Soil Science Society of America Journal, 75(2), 488-497.
- Lekakis, E. H., & Antonopoulos, V. Z. (2015). Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport. Journal of Hydrology, 530, 431-446.
- Mguidiche, A., Provenzano, G., Douh, B., Khila, S., Rallo, G., & Boujelben, A. (2015). Assessing Hydrus‐2D to Simulate Soil Water Content (SWC) and Salt Accumulation Under an SDI System: Application to a Potato Crop in a Semi‐Arid Area of Central Tunisia. Irrigation and Drainage, 64(2), 263-274.
- Mohammad, N., Alazba, A. A., & Šimůnek, J. (2014). HYDRUS simulations of the effects of dual-drip subsurface irrigation and a physical barrier on water movement and solute transport in soils. Irrigation Science, 32(2), 111-125.
- Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3), 513-522.
- Nazari, E., Besharat, S., Zeinalzadeh, K., & Mohammadi, A. (2020). Measurement and simulation of the water flow and root uptake in soil under subsurface drip irrigation of apple tree. Iranian Journal of Irrigation & Drainage, 13(6), 1806-1809.(In Persian).
- Nazari, E., Besharat, S., Zeinalzadeh, K., & Mohammadi, A. (2021). Measurement and simulation of the water flow and root uptake in soil under subsurface drip irrigation of apple tree. Agricultural Water Management, 255, 106972. https://doi.org/10.1016/j.agwat.2021.106972
- O’Brien, D. M., Rogers, D. H., Lamm, F. R., & Clark, G. A. (1998). An economic comparison of subsurface drip and center pivot sprinkler irrigation systems. Applied Engineering in Agriculture, 14(4), 391-398.
- Orzolek, M. (2017). A guide to the manufacture, performance, and potential of plastics in agriculture. Elsevier.
- Patel, N., & Rajput, T. B. S. (2008). Dynamics and modeling of soil water under subsurface drip irrigated onion. Agricultural Water Management, 95(12), 1335-1349.
- Saefuddin, R., Saito, H., & Šimůnek, J. (2019). Experimental and numerical evaluation of a ring-shaped emitter for subsurface irrigation. Agricultural Water Management, 211, 111-122.
- Simunek, J., Van Genuchten, M. T., & Sejna, M. (2006). The HYDRUS software package for simulating the two-and three-dimensional movement of water, heat, and multiple solutes in variably-saturated media. Technical Manual, 1.
- Šimůnek, J., Van Genuchten, M. T., & Šejna, M. (2016). Recent developments and applications of the HYDRUS computer software packages. Vadose Zone Journal, 15(7), vzj2016-04.
- Siyal, A. A., & Skaggs, T. H. (2009). Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation. Agricultural Water Management, 96(6), 893-904.
- Skaggs, T. H., Trout, T. J., Šimůnek, J., & Shouse, P. J. (2004). Comparison of HYDRUS-2D simulations of drip irrigation with experimental observations. Journal of Irrigation and Drainage Engineering, 130(4), 304-310.
- Soltani, M., Rabbaniha, H., & Fakhar, M. S. (2021). The Effects of Dripper Installation Depth on Increasing the Maize Root Water Uptake Efficiency for Three Various Soil Textures. 771-782. (In Persian).
- Subbaiah, R. (2013). A review of models for predicting soil water dynamics during trickle irrigation. Irrigation Science, 31(3), 225-258.
- Van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5), 892-898.
- Vrugt, J. A., Bouten, W., Gupta, H. V, & Sorooshian, S. (2002). Toward improved identifiability of hydrologic model parameters: The information content of experimental data. Water Resources Research, 38(12), 41-48.
- Wang, Z., Fan, B., & Guo, L. (2019). Soil salinization after long‐term mulched drip irrigation poses a potential risk to agricultural sustainability. European Journal of Soil Science, 70(1), 20-24.
- Zareabyaneh, H., Naghavi, H., & Eslami, A. (2013). Assessment of influence of installation depth of emitter with same discharges on moisture distribution in subsurface drip irrigation system and simulation with HYDRUS-2D model. Irrigation and Water Engineering, 3(2), 101-113.
- Zhang, H., Khan, A., Tan, D. K. Y., & Luo, H. (2017). Rational water and nitrogen management improves root growth, increases yield and maintains water use efficiency of cotton under mulch drip irrigation. Frontiers in Plant Science, 8, 912.
|