تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,036 |
تعداد مشاهده مقاله | 125,507,215 |
تعداد دریافت فایل اصل مقاله | 98,771,031 |
Pair difference cordial labeling of planar grid and mangolian tent | ||
Journal of Algorithms and Computation | ||
دوره 53، شماره 2، اسفند 2021، صفحه 47-56 اصل مقاله (143.89 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jac.2021.85196 | ||
نویسندگان | ||
R Ponraj* 1؛ A Gayathri2؛ S Somasundaram3 | ||
1Department of Mathematics Sri Parakalyani College Alwarkurichi -627 412, India | ||
2Research Scholor,Reg.No:20124012092023 Department of Mathematics Manonmaniam Sundaranar University, Abhishekapati,Tirunelveli–627 012, India | ||
3Department of Mathematics Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012, Tamilnadu, India | ||
چکیده | ||
Let $G = (V, E)$ be a $(p,q)$ graph. Define \begin{equation*} \rho = \begin{cases} \frac{p}{2} ,& \text{if $p$ is even}\\ \frac{p-1}{2} ,& \text{if $p$ is odd}\\ \end{cases} \end{equation*}\\ and $L = \{\pm1 ,\pm2, \pm3 , \cdots ,\pm\rho\}$ called the set of labels. \noindent Consider a mapping $f : V \longrightarrow L$ by assigning different labels in L to the different elements of V when p is even and different labels in L to p-1 elements of V and repeating a label for the remaining one vertex when $p$ is odd.The labeling as defined above is said to be a pair difference cordial labeling if for each edge $uv$ of $G$ there exists a labeling $\left|f(u) - f(v)\right|$ such that $\left|\Delta_{f_1} - \Delta_{f_1^c}\right| \leq 1$, where $\Delta_{f_1}$ and $\Delta_{f_1^c}$ respectively denote the number of edges labeled with $1$ and number of edges not labeled with $1$. A graph $G$ for which there exists a pair difference cordial labeling is called a pair difference cordial graph. In this paper we investigate pair difference cordial labeling behavior of planar grid and mangolian tent graphs. | ||
کلیدواژهها | ||
Path؛ Laddar؛ Planar grid؛ Mangolian tent | ||
آمار تعداد مشاهده مقاله: 311 تعداد دریافت فایل اصل مقاله: 267 |