- [1] Montogomery, D., Introduction to statistical quality control 6th edition. Arizona state University, 2009.
- [2] Kang, L. and S.L. Albin, On-line monitoring when the process yields a linear profile. Journal of quality Technology, 2000. 32(4): p. 418.
- [3] Kim, , M.A. Mahmoud, and W.H. Woodall, On the monitoring of linear profiles. Journal of Quality Technology, 2003. 35(3): p. 317.
- [4] Stover, F.S. and R.V. Brill, Statistical quality control applied to ion chromatography calibrations. Journal of Chromatography A, 1998. 804(1-2): p. 37-43.
- [5] Mahmoud, M.A. and W.H. Woodall, Phase I analysis of linear profiles with calibration applications. Technometrics, 2004. 46(4): p. 380-391.
- [6] Mahmoud, M.A., Parker, P.A., Woodall, W.H., Hawkins, D.M., A change point method for linear profile data. Quality and Reliability Engineering International, 2007. 23(2): p. 247-268.
- [7] Mahmoud, M.A., J. Morgan, and W.H. Woodall, The monitoring of simple linear regression profiles with two observations per sample. Journal of Applied Statistics, 2010. 37(8): p. 1249-1263.
- [8] Noorossana, R., A. Amiri, and P. Soleimani, On the monitoring of autocorrelated linear profiles. Communications in Statistics—Theory and Methods, 2008. 37(3): p. 425-442.
- [9] Mahmoud, M.A., Phase I analysis of multiple linear regression profiles. Communications in Statistics—Simulation and Computation®, 2008. 37(10): p. 2106-2130.
- [10] Jensen, W.A., J.B. Birch, and W.H. Woodall, Monitoring correlation within linear profiles using mixed models. Journal of Quality Technology, 2008. 40(2): p. 167-183.
- [11] Amiri, A., Eyvazian, M., Zou, C., Noorossana, R., A parameters reduction method for monitoring multiple linear regression profiles. The International Journal of Advanced Manufacturing Technology, 2012. 58(5-8): p. 621-629.
- [12] Parker, P.A. and T.D. Finley, Advancements in aircraft model force and attitude instrumentation by integrating statistical methods. Journal of aircraft, 2007. 44(2): p. 436-443.
- [13] Noorossana, R., M. Eyvazian, and A. Vaghefi, Phase II monitoring of multivariate simple linear profiles. Computers & Industrial Engineering, 2010. 58(4): p. 563-570.
- [14] Eyvazian, M., Noorossana, R., Saghaei, A., Amiri, A., Phase II monitoring of multivariate multiple linear regression profiles. Quality and Reliability Engineering International, 2011. 27(3): p. 281-296.
- [15] Ayoubi, M., R. Kazemzadeh, and R. Noorossana, Estimating multivariate linear profiles change point with a monotonic change in the mean of response variables. The International Journal of Advanced Manufacturing Technology, 2014. 75(9-12): p. 1537-1556.
- [16] Zou, C., X. Ning, and F. Tsung, LASSO-based multivariate linear profile monitoring. Annals of Operations Research, 2012. 192(1): p. 3-19.
- [17] Ding, Y., L. Zeng, and S. Zhou, Phase I analysis for monitoring nonlinear profiles in manufacturing processes. Journal of Quality Technology, 2006. 38(3): p. 199-216.
- [18] Williams, J.D., W.H. Woodall, and J.B. Birch, Statistical monitoring of nonlinear product and process quality profiles. Quality and Reliability Engineering International, 2007. 23(8): p. 925-941.
- [19] Vaghefi, A., S. Tajbakhsh, and R. Noorossana, Phase II monitoring of nonlinear profiles. Communications in Statistics—Theory and Methods, 2009. 38(11): p. 1834-1851.
- [20] Williams, J.D., W.H. Woodall, and J.B. Birch. Phase I monitoring of nonlinear profiles. in quality and productivity research conference, Yorktown Heights, New York. 2003.
- [21] Woodall, W.H. and D.C. Montgomery, Research issues and ideas in statistical process control. Journal of Quality Technology, 1999. 31(4): p. 376.
- [22] Chen, G., The mean and standard deviation of the run length distribution of X charts when control limits are estimated. Statistica Sinica, 1997: p. 789-798.
- [23] Chakraborti, S., Run length distribution and percentiles: the Shewhart chart with unknown parameters. Quality Engineering, 2007. 19(2): p. 119-127.
- [24] Albers, W. and W.C. Kallenberg, Estimation in Shewhart control charts: effects and corrections. Metrika, 2004. 59(3): p. 207-234.
- [25] Jones,A., C.W. Champ, and S.E. Rigdon, The performance of exponentially weighted moving average charts with estimated parameters. Technometrics, 2001. 43(2): p. 156-167.
- [26] Jones, L.A., C.W. Champ, and S.E. Rigdon, The run length distribution of the CUSUM with estimated parameters. Journal of Quality Technology, 2004. 36(1): p. 95-108.
- [27] Maravelakis, P.E. and P. Castagliola, An EWMA chart for monitoring the process standard deviation when parameters are estimated. Computational statistics & data analysis, 2009. 53(7): p. 2653-2664.
- [28] Mahmoud, M.A. and P.E. Maravelakis, The performance of the MEWMA control chart when parameters are estimated. Communications in Statistics—Simulation and Computation®, 2010. 39(9): p. 1803-1817.
- [29] Shu, L., F. Tsung, and K.-L. Tsui, Run-length performance of regression control charts with estimated pa Journal of Quality Technology, 2004. 36(3): p. 280-292.
- [30] Castagliola, P. and P.E. Maravelakis, A CUSUM control chart for monitoring the variance when parameters are estimated. Journal of Statistical Planning and Inference, 2011. 141(4): p. 1463-1478.
- [31] Champ, C.W., L.A. Jones-Farmer, and S.E. Rigdon, Properties of the T 2 control chart when parameters are estimated. Technometrics, 2005. 47(4): p. 437-445.
- [32] Castagliola, P., P.E. Maravelakis, and F.O. Figueiredo, The EWMA median chart with estimated parameters. IIE Transactions, 2016. 48(1): p. 66-74.
- [33] Jones, M.A. andH. Steiner, Assessing the effect of estimation error on risk-adjusted CUSUM chart performance. International Journal for Quality in Health Care, 2012. 24(2): p. 176-181.
- [34] Zhang, M., F.M. Megahed, and W.H. Woodall, Exponential CUSUM charts with estimated control limits. Quality and Reliability Engineering International, 2014. 30(2): p. 275-286.
- [35] Zhang, M., Peng, Y., Schuh, A., Megahed, F.M., Woodall, W.H., Geometric charts with estimated control limits. Quality and Reliability Engineering International, 2013. 29(2): p. 209-223.
- [36] Aly, A.A., M.A. Mahmoud, and W.H. Woodall, A comparison of the performance of phase II simple linear profile control charts when parameters are estimated. Communications in Statistics-Simulation and Computation, 2015. 44(6): p. 1432-1440.
- [37] Woodall, W.H. and D.C. Montgomery, Some current directions in the theory and application of statistical process monitoring. Journal of Quality Technology, 2014. 46(1): p. 78-94.
- [38] Mahmoud, M.A., The performance of phase II simple linear profile approaches when parameters are estimated. Communications in Statistics-Simulation and Computation, 2012. 41(10): p. 1816-1833.
- [39] Yazdi, A.A., Z. Hamadani, and A. Amiri, Phase II monitoring of multivariate simple linear profiles with estimated parameters. Journal of Industrial Engineering International, 2019. 15(4): p. 557-570.
- [40] Aly, A.A., M.A. Mahmoud, and R. Hamed, The performance of the multivariate adaptive exponentially weighted moving average control chart with estimated parameters. Quality and Reliability Engineering International, 2016. 32(3): p. 957-967.
- [41] Kazemzadeh, R.B., R. Noorossana, and A. Amiri, Phase I monitoring of polynomial profiles. Communications in Statistics—Theory and Methods, 2008. 37(10): p. 1671-1686.
- [42] Zou, C., F. Tsung, and Z. Wang, Monitoring general linear profiles using multivariate exponentially weighted moving average schemes. Technometrics, 2007. 49(4): p. 395-408.
- [43] Kazemzadeh, R., R. Noorossana, and A. Amiri, Monitoring polynomial profiles in quality control applications. The International Journal of Advanced Manufacturing Technology, 2009. 42(7-8): p. 703-712.
- [44] Amiri, A., W.A. Jensen, and R.B. Kazemzadeh, A case study on monitoring polynomial profiles in the automotive industry. Quality and Reliability Engineering International, 2010. 26(5): p. 509-520.
- [45] Kazemzadeh, R., R. Noorossana, and A. Amiri, Phase II monitoring of autocorrelated polynomial profiles in AR (1) processes. Scientia Iranica. Transaction E, Industrial Engineering, 2010. 17(1): p. 12.
- [46] Abdella, G.M., Kim, J., Al-Khalifa, K.N., Hamouda, A.M.., Double EWMA‐Based Polynomial Quality Profiles Monitoring. Quality and Reliability Engineering International, 2016. 32(8): p. 2639-2652.
- [47] Lowry, C.A., Woodall, W.H., Champ, C.W., Rigdon, S.E., A multivariate exponentially weighted moving average control chart. Technometrics, 1992. 34(1): p. 46-53.
- [48] Crowder, S.V. and M.D. Hamilton, An EWMA for monitoring a process standard deviation. Journal of Quality Technology, 1992. 24(1): p. 12-21.
- [49] Shamma, S.E., R.W. Amin, and A.K. Shamma, A double exponentially weigiited moving average control procedure with variable sampling intervals. Communications in Statistics-Simulation and Computation, 1991. 20(2-3): p. 511-528.
- [50] Montgomery, D.C., E.A. Peck, and G.G. Vining, Introduction to linear regression analysis. Vol. 821. 2012: John Wiley & Sons.
- [51] Quesenberry, C., The effect of sample size on estimated limits for X ̅ and X control charts. Journal of Quality Technology, 1993. 25: p. 237–247.
- [52] Jones, L.A., The statistical design of EWMA control charts with estimated parameters. Journal of Quality Technology, 2002. 34: p. 277–288.
- [53] Mahmoud, M.A., Maravelakis, P.E., The performance of the MEWMA control chart when parameters are estimated. Communications in Statistics-Simulation and, 2010. 39: p. 1803–1817.
|