تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,057 |
تعداد دریافت فایل اصل مقاله | 97,205,632 |
The effect of inorganic acids on reducing iron impurities during iron-rich laterite ore leaching | ||
International Journal of Mining and Geo-Engineering | ||
دوره 55، شماره 2، اسفند 2021، صفحه 191-199 اصل مقاله (1.42 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/ijmge.2021.311273.594869 | ||
نویسندگان | ||
Marzieh Hosseini Nasab* 1؛ Mohammad Noaparast2؛ Hadi Abdollahi2 | ||
1Department of Mining Engineering, University of Sistan and Baluchestan, Zahedan, Iran | ||
2School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran | ||
چکیده | ||
The Recovery of nickel from lateritic ores as the main oxide resources has been always debated. Since it consists of 1.74% Ni, 0.14% Co and 40.8% Fe, co-dissolution of iron occurred by using common lixiviation like sulfuric acid. Therefore, some leaching agents should be sought due to promoting a high dissolution of nickel/cobalt and a negligible iron recovery. This research investigates the effect of using organic acids such as gluconic, lactic and citric acid along with sulfuric acid on recoveries of Ni/Co from an iron-rich laterite ore. The results showed that adding sulfuric acid to the optimal combined ratio of the organic acids (gluconic: lactic: citric= 1: 2: 3) to obtain the combined ratio of 6 : 1: 2: 3 (sulfuric: gluconic: lactic: citric acid), simultaneously increasing the temperature from 60 to 90 °C, and increasing the final combined concentration of the acids from 3.5 M to 5 M, significantly increased nickel and cobalt recoveries by 80.4 and 68.7%, respectively, and slightly increased iron extraction by 5.05% all when compared to using the optimal combined ratio of organic acids. The use of 5 M sulfuric acid alone as a leaching agent, at 90 ° C, resulted in an 81.11% increase in iron dissolution than the 6: 1: 2: 3 combination. The results obtained indicated that the reaction rate was controlled by the chemical reaction, and the activation energies of 42.71 kJ/mol for nickel and 84.57 kJ/mol for cobalt were consistent with this conclusion. | ||
کلیدواژهها | ||
Laterite؛ Nickel؛ Cobalt؛ Organic acids؛ Atmospheric leaching | ||
مراجع | ||
[1] Pawlowska, A., and Sadowski, Z. (2017). Influence of chemical and biogenic leaching on surface area and particle size of laterite ore. Physicochem. Probl. Miner. Process 53, 869-877.
[2] Lv, X., Lv, W., You, Z., Lv, X., and Bai, Ch. )2018). Non-isothermal kinetics study on carbothermic reduction of nickel laterite ore. Powder Technol. 340, 495–501.
[3] Petrus, H.B.T.M., Wanta, K.C., Setiawan, H., Perdana, I., and Astuti, W. (2018). Effect of pulp density and particle size on indirect bioleaching of Pomalaa nickel laterite using metabolic citric acid, IOP Conf Ser Mater Sci Eng 285, 1-5.
[4] Buyukakinci, E. (2008). Extraction of nickel from lateritic ores. Yüksek Lisans Tezi, Orta Doğu Teknik Üniversitesi.
[5] Li, G.H., Rao, M.J., Peng, Z.W., and Jiang, T. (2010). Extraction of cobalt from laterite ores by citric acid in presence of ammonium bifluoride, Trans. Nonferrous Met. Soc. China 20, 1517-1520.
[6] Alibhai, K., Dudeney, A.W.L., Leak, D.J., Agatzini, S., and Tzeferis, P. (1993). Bioleaching and bioprecipitation of nickel and iron from laterites. FEMS Microbiol. Rev. 11, 87-95.
[7] Tang, J., and Valix, M. (2004). Leaching of low-grade nickel ores by fungi metabolic acids. In: Proceedings of Separations Technology VI: New Perspectives on Very Large-Scale Operations, 1-16.
[8] Simate, G.S., Ndlovu, S., and Walubita, L.F. (2010). The fungal and chemolithotrophic leaching of nickel laterites—Challenges and opportunities. HYDROMETALLURGY. 103, 150-157.
[9] Astuti, W., Hirajima, T., Sasaki, K., and Okibe, N. (2016). Comparison of effectiveness of citric acid and other acids in leaching of low-grade Indonesian saprolitic ores, Miner. Eng. 85, 1-16.
[10] Biswas, S., Chakraborty, S., Chaudhuri, M.G., Banerjee, P.C., Mukherjee, S., and Dey, R. (2014). Optimization of process parameters and dissolution kinetics of nickel and cobalt from lateritic chromite overburden using organic acids, J Chem Technol Biotechnol 89, 1491–1500.
[11] Javanshir, S., Mofrad, Z.H., Azargoon, A. (2018). Atmospheric pressure leaching of nickel from a low-grade nickel-bearing ore. Physicochem. Probl. Miner. Process 54(3), 890-900.
[12] D. B. Johnson, Reductive dissolution of minerals and selective recovery of metals using acidophilic iron- and sulfate-reducing acidophiles. Hydrometallurgy127-128 (2012) 172–177.
[13] Hosseini Nasab, M., Noaparast, M., and Abdollahi, H. (2020). Dissolution optimization and kinetics of nickel and cobalt from iron-rich laterite ore, using sulfuric acid at atmospheric pressure, Int J Chem Kinet. 52, 283–298.
[14] Hosseini Nasab, M., Noaparast, M., and Abdollahi, H. (2020). Dissolution of nickel and cobalt from iron-rich laterite ores using different organic acids, JME, doi:10.22044/jme.2020.9564.1869
[15] Miettinen, V., Mäkinen, J., Kolehmainen, E., Kravtsov, T., Rintala, L., (2019). Iron Control in Atmospheric Acid Laterite Leaching, Minerals 9, 404; doi:10.3390/min9070404
[16] Basturkcu, H., Acarkan, N., (2017). Selective nickel-iron separation from atmospheric leach liquor of a lateritic nickel ore using the para-goethite method, Physicochemical Problems of Mineral Processing 53(1): 212−226; doi:10.5277/ppmp170118
[17] Wang, K., Li, J., McDonald, R.G., Browner, R.E., (2018). Iron, aluminum, and chromium co-removal from atmospheric nickel laterite leach solutions, Minerals Engineering 116, 35–45; doi:10.1016/j.mineng.2017.10.019
[18] Astuti, W. (2015). Atmospheric leaching of Nickel from lowgrade Indonesian saprolite ores by biogenic citric acid, As partial fulfillment of the requirements for the degree of Doctor of Engineering, Kyushu University Fukuoka, Japan.
[19] Li, J., Li, X., Hu, Q., Wang, Z., Zhou, Y., Zheng, J., Liu, W., and Li, L. (2009). Effect of pre-roasting on leaching of laterite. Hydrometallurgy 99(1-2): 84-88.
[20] Tang, J., and Valix, M. (2006a). Leaching low-grade nickel ores by fungi metabolic acids, In Fell, C., Keller II, G.E. (Eds.), 2004 ECI Conference on Separations Technology VI: New Perspectives on Very Large Scale Operations. Berkeley Electronic Press. Paper 5, 16 pp.
[21] Önal, M.A.R., Topkaya, Y.A. (2014). Pressure acid leaching of Çaldag lateritic nickel ore: an alternative to heap leaching, Hydrometallurgy 1(42): 98-107.
[22] Bosecker, K. (1988). Bioleaching of non-sulfide minerals with heterotrophic microorganisms, In: Durand, G., Bobichon, L., Florent, J. (Eds.), Proceedings of the 8th International Biotechnology Symposium. Société Française de Microbiologie, Paris, 1106–1118.
[23] Chang, Y., Zhao, K., and Pesic, B. (2016). Selective leaching of nickel from pre-reduced limonitic laterite under moderate HPAL conditions-Part I: Dissolution, J MIN METALL B. 52, 127-134.
[24] McDonald, R. G., and Whittington, B. I. (2008). Atmospheric acid leaching of nickel laterites review. Part II. Chloride and biotechnologies, HYDROMETALLURGY. 91, 56-69.
[25] Astuti, W. (2015). Atmospheric leaching of Nickel from lowgrade Indonesian saprolite ores by biogenic citric acid, As partial fulfillment of the requirements for the degree of doctor of engineering, Kyushu University Fukuoka, Japan.
[26] Lee, S.O. (2005). Dissolution of iron oxides by oxalic acid, University of New South Wales.
[27] Stumm, W. (1992). Chemistry of the Solid–Water Interface, John Wiley and Sons Inc., New York.
[28] Cornell, R., Posner, A., Quirk, J. (1976). Kinetics and mechanisms of the acid dissolution of goethite (α-FeOOH). Journal of Inorganic and Nuclear Chemistry 38(3), 563-567.
[29] MacCarthy, J., Nosrati, A., Skinner, W., and Addai-Mensah, J. (2016). Atmospheric acid leaching mechanisms and kinetics and rheological studies of a low-grade saprolitic nickel laterite ore. HYDROMETALLURGY. 160: 26-37.
[30] Levenspiel, O. (1972). Chemical engineering reaction. Wiley-Eastern Limited, New York.
[31] Habashi, F. (1999). Kinetics of metallurgical processes. Metallurgie Extractive Quebec.
[32] Uçar, G. (2009). Kinetics of sphalerite dissolution by sodium chlorate in hydrochloric acid. Hydrometallurgy 95(1): 39-43.
[33] Tang, A., Su, L., Li, C., and Wei, W. (2010). Effect of mechanical activation on acid-leaching of kaolin residue. Appl Clay Sci. 48(3): 296-299. | ||
آمار تعداد مشاهده مقاله: 582 تعداد دریافت فایل اصل مقاله: 514 |