- Adrian, D. D., Yu, F. X., & Barbe, D. (1994). Water quality modeling for a sinusoidally varying waste discharge concentration. Water Research, 28(5), 1167-1174.
- Balf, M. R., Noori, R., Berndtsson, R., Ghaemi, A., & Ghiasi, B. (2018). Evolutionary polynomial regression approach to predict longitudinal dispersion coefficient in rivers. Journal of Water Supply: Research and Technology-Aqua, 67(5), 447-457.
- Bavandpouri Gilan, N., Mazaheri, M., & Fotouhi Firouzabadi, M. (2017). Analytical Solution of Contaminant Transport Equation in River by Arbitrary Variable Coefficients Using Generalized Integral Transform Technique. Journal of Advanced Mathematical Modeling, 7(1), 89-116. (in Persian)
- Bharati, V. K., Singh, V. P., Sanskrityayn, A., & Kumar, N. (2019). Analytical solution for solute transport from a pulse point source along a medium having concave/convex spatial dispersivity within fractal and Euclidean framework. Journal of Earth System Science, 128(8), 1-19.
- Carr, E. J. (2020). New semi-analytical solutions for advection–dispersion equations in multilayer porous media. Transport in Porous Media, 135(1), 39-58.
- Chapra, S. C. (2008). Surface water-quality modeling. Waveland press.
- Chen, J.-S., Liu, C.-W., Liang, C.-P., & Lai, K.-H. (2012). Generalized analytical solutions to sequentially coupled multi-species advective–dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition. Journal of hydrology, 456, 101-109.
- Cotta, R. M., Knupp, D. C., & Naveira-Cotta, C. P. (2016). Analytical heat and fluid flow in microchannels and microsystems. New York, NY: Springer.
- Dresnack, R., & Dobbins, W. E. (1968). Numerical analysis of BOD and DO profiles. Journal of the Sanitary Engineering Division, 94(5), 789-807.
- Genuchten, M. T., Leij, F. J., Skaggs, T. H., Toride, N., Bradford, S. A., & Pontedeiro, E. M. (2013). Exact analytical solutions for contaminant transport in rivers 1. The equilibrium advection-dispersion equation. Journal of Hydrology and Hydromechanics, 61(2), 146.
- Guerrero, J. P., Pimentel, L. C. G., Skaggs, T., & Van Genuchten, M. T. (2009). Analytical solution of the advection–diffusion transport equation using a change-of-variable and integral transform technique. International Journal of Heat and Mass Transfer, 52(13-14), 3297-3304.
- Gulliver, J. S. (2007). Introduction to chemical transport in the environment. Cambridge University Press.
- Heaton, L. L., López, E., Maini, P. K., Fricker, M. D., & Jones, N. S. (2012). Advection, diffusion, and delivery over a network. Physical Review E, 86(2), 021905.
- Hemond, H. F., & Fechner, E. J. (2014). Chemical fate and transport in the environment. Academic Press: Elsevier.
- Horváth, G., Horváth, I., Almousa, S. A.-D., & Telek, M. (2020). Numerical inverse Laplace transformation using concentrated matrix exponential distributions. Performance Evaluation, 137, 102067.
- Korn, G. A., & Korn, T. M. (2000). Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. Courier Corporation.
- Kreyszig, E. (2008). Advanced Engineering Mathematics. JohnWileyand sons.
- Kumar, A., Jaiswal, D. K., & Kumar, N. (2009). Analytical solutions of one-dimensional advection-diffusion equation with variable coefficients in a finite domain. Journal of Earth System Science, 118(5), 539-549.
- Kumar, A., Jaiswal, D. K., & Kumar, N. (2010). Analytical solutions to one-dimensional advection–diffusion equation with variable coefficients in semi-infinite media. Journal of hydrology, 380(3-4), 330-337.
- Kumar, P., & Sudheendra, S. (2018). Mathematical solution of transport of pollutant in unsaturated porous media with retardation factor. International Journal of Applied Engineering Research, 13(1), 100-104.
- Mashhadgarme, N., Mazaheri, M., & Mohammad, V. S. J. (2017). Analytical solutions to one-and two-dimensional Advection-Dispersion-Reaction equation with arbitrary source term time pattern using Green's function method. Sharif Journal of Civil Engineering, 33(2), 77-91. (in Persian)
- Mazaheri, M., MV Samani, J., & MV Samani, H. (2013). Analytical solution to one-dimensional advection-diffusion equation with several point sources through arbitrary time-dependent emission rate patterns. Journal of Agricultural Science and Technology, 15(6), 1231-1245.
- Murli, A., & Rizzardi, M. (1990). Algorithm 682: Talbot's method of the Laplace inversion problems. ACM Transactions on Mathematical Software (TOMS), 16(2), 158-168.
- Najafzadeh, M., Noori, R., Afroozi, D., Ghiasi, B., Hosseini-Moghari, S.-M., Mirchi, A., Haghighi, A. T., & Kløve, B. (2021). A comprehensive uncertainty analysis of model-estimated longitudinal and lateral dispersion coefficients in open channels. Journal of hydrology, 603, 126850.
- Noori, R., Ghiasi, B., Sheikhian, H., & Adamowski, J. F. (2017). Estimation of the dispersion coefficient in natural rivers using a granular computing model. Journal of Hydraulic Engineering, 143(5), 04017001.
- Noori, R., Mirchi, A., Hooshyaripor, F., Bhattarai, R., Haghighi, A. T., & Kløve, B. (2021). Reliability of functional forms for calculation of longitudinal dispersion coefficient in rivers. Science of The Total Environment, 791, 148394.
- Park, E., & Zhan, H. (2001). Analytical solutions of contaminant transport from finite one-, two-, and three-dimensional sources in a finite-thickness aquifer. Journal of contaminant hydrology, 53(1-2), 41-61.
- Sanskrityayn, A., Singh, V. P., Bharati, V. K., & Kumar, N. (2018). Analytical solution of two-dimensional advection–dispersion equation with spatio-temporal coefficients for point sources in an infinite medium using Green’s function method. Environmental Fluid Mechanics, 18(3), 739-757.
- Sanskrityayn, A., Suk, H., Chen, J.-S., & Park, E. (2021). Generalized Analytical Solutions of The Advection-Dispersion Equation with Variable Flow and Transport Coefficients. Sustainability, 13(14), 7796.
- Sanskrityayn, A., Suk, H., & Kumar, N. (2017). Analytical solutions for solute transport in groundwater and riverine flow using Green’s Function Method and pertinent coordinate transformation method. Journal of hydrology, 547, 517-533.
- Shukla, V. (2002). Analytical solutions for unsteady transport dispersion of nonconservative pollutant with time-dependent periodic waste discharge concentration. Journal of Hydraulic Engineering, 128(9), 866-869.
- Simpson, M. J., & Ellery, A. J. (2014). Exact series solutions of reactive transport models with general initial conditions. Journal of hydrology, 513, 7-12.
- Smits, A. J. M., Nienhuis, P. H., & Leuven, R. S. E. W. (2000). New approaches to river management. Environmental Management and Health, 11(5), 474-475.
- Stehfest, H. (1970). Algorithm 368: Numerical inversion of Laplace transforms [D5]. Communications of the ACM, 13(1), 47-49.
- Villinger, H. (1985). Solving cylindrical geothermal problems using the Gaver-Stehfest inverse Laplace transform. Geophysics, 50(10), 1581-1587.
- Wang, H., & Wu, H. (2009). Analytical solutions of three-dimensional contaminant transport in uniform flow field in porous media: A library. Frontiers of Environmental Science & Engineering in China, 3(1), 112-128.
- Williams, G. P., & Tomasko, D. (2008). Analytical solution to the advective-dispersive equation with a decaying source and contaminant. Journal of Hydrologic Engineering, 13(12), 1193-1196.
- Yang, S., Zhou, H., Zhang, S., & Wang, L. (2019). Analytical solutions of advective–dispersive transport in porous media involving conformable derivative. Applied Mathematics Letters, 92, 85-92.
- Yu, F., Adrian, D., & Singh, V. (1991). Modeling river quality by the superposition method. Journal of Environmental Systems, 20(4), 1-16.
|