تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,503 |
تعداد مشاهده مقاله | 124,121,272 |
تعداد دریافت فایل اصل مقاله | 97,228,069 |
حذف رنگ از پساب نساجی بهوسیلۀ نانوالیاف دیاکسید تیتانیوم، فریت کبالت و دیاکسید تیتانیوم/ فریت کبالت | ||
نشریه محیط زیست طبیعی | ||
مقاله 4، دوره 74، شماره 2، شهریور 1400، صفحه 250-263 اصل مقاله (1.09 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jne.2021.320048.2179 | ||
نویسندگان | ||
سید سهیل یاسینی اردکانی1؛ رامین عبقری* 2؛ محمد میرجلیلی3 | ||
1دانشجوی دکتری گروه نساجی، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران | ||
2استادیار گروه نساجی، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران | ||
3استاد گروه نساجی، واحد یزد، دانشگاه آزاد اسلامی، یزد، ایران | ||
چکیده | ||
استفادۀ روزافزون از انواع رنگزا و آلودگی پساب حاوی مواد رنگزا از مشکلات مهم محیط زیست است. روشهای گوناگونی برای تصفیۀ پسابهای حاوی مواد رنگزا بررسی شده است. در این پژوهش، نانوالیاف دیاکسید تیتانیوم، فریت کبالت و دیاکسید تیتانیوم/ فریت کبالت با استفاده از روش الکتروریسی تهیه و اثر تغییر ولتاژ و فاصلۀ الکتروریسی بر قطر و ریختشناسی نانوالیاف بررسی شد. نمونههای نانوالیاف تهیهشده بهعنوان جاذب برای رنگبری پسابهای حاوی مواد رنگ مستقیم قرمز 80 استفاده شد. اثر پارامترهای مختلف مانند مقدار جاذب، غلظت رنگزا و pH بر درصد بازده رنگبری بررسی شد. خواص ساختاری و نوری نانوالیاف تهیهشده بهوسیلۀ میکروسکوپ الکترونی روبشی، الگوی پراش پرتو ایکس و آزمون تعیین سطح ویژه مشخصهیابی شد و طیفسنج فرابنفش- مرئی (UV-Vis) بهمنظور بررسی حذف رنگ از محلول رنگی استفاده شد. تصاویر SEM بهدستآمده نشان داد که در فرایند الکتروریسی در ولتاژ 18 کیلوولت، همۀ نمونههای نانوالیاف بدون هیچ نقصی تشکیل شدند و با افزایش فاصلۀ الکتروریسی، قطر نانوالیاف کاهش یافت. نتایج حاصل از XRD نشان میدهد که نانوساختارهای تهیهشده پس از عملیات حرارتی دارای ساختاری با فاز غالب بلوری است. نتایج BET نشان داد که سرعت تخریب رنگ k در نانوالیاف دیاکسید تیتانیوم/ فریت کبالت برابر با ppm/h 45/93 است که از دو نمونۀ دیگر بهمراتب بهتر است. با توجه به نتایج بهدستآمده بازده حذف رنگ نانوالیاف دیاکسید تیتانیوم/ فریت کبالت با افزایش الکترون- حفره نسبت به نانوالیاف دیاکسید تیتانیوم و فریت کبالت بهمراتب بهتر و رنگبری بیشتری در محلول رنگی داشت. | ||
کلیدواژهها | ||
الکتروریسی؛ الکترون- حفره؛ حذف آلایندۀ زیستمحیطی؛ رنگ مستقیم قرمز80؛ فتوکاتالیست | ||
مراجع | ||
Almasian, A., Chizari Fard, G., Parvinzadeh Gashti, M., Mirjalili, M., Mokhtari Shourijeh, Z. 2016. Surface modification of electrospun PAN nanofibers by amine compounds for adsorption of anionic dyes. Desalination and Water Treatment 57(22), 10333-10348. Ardakani, Y., Ramin Abghari, S., Mirjalili, M., 2019. TiO2@ CoFe2O4 Nanofiber for the Photocatalytic Degradation of Direct Red 80. Physical Chemistry Research 7, 309-25. Chamankar, N., Khajavi, Ramin., Yousefi, A.A., Rashidi, A., Golestanifard, A., 2019. Comparing the piezo, pyro and dielectric properties of PZT particles synthesized by sol–gel and electrospinning methods. Journal of Materials Science: Materials in Electronics 30, 8721-35. Chamankar, N., Khajavi, Ramin., Yousefi, A.A., Rashidi, Golestanifard, A., 2020a. An experimental model for predicting the piezo and dielectric constant of PVDF-PZT nanocomposite fibers with 0–3 and 1–3 connectivity. Ceramics International 46, 23567-81. Chen, H.S., Su, C., Chen, J.L., Yang, T.Y., Hsu, N.M., Li, W.R. 2011. Preparation and characterization of pure rutile TiO2 nanoparticles for photocatalytic study and thin films for dye-sensitized solar cells. Journal of Nanomaterials 2011. Chizari Fard, G., Mirjalili, M., Almasian, A., Najafi, F., 2017. PAMAM grafted α-Fe2O3 nanofiber: Preparation and dye removal ability from binary system. Journal of the Taiwan Institute of Chemical Engineers 80, 156-167. Dan L., Xia, Y., 2003. Fabrication of titania nanofibers by electrospinning. Nano Letters 3, 555-60. Elahifard, M. R., Rahimnejad, S., Pourbaba, R., Haghighi, S., Gholami, M.R. 2011. Photocatalytic mechanism of action of apatite-coated Ag/AgBr/TiO2 on phenol and Escherichia coli and Bacillus subtilis bacteria under various conditions. Progress in Reaction Kinetics and Mechanism 36(1), 38-52. Elahifard, M., Padervand, M., Yasini, S., Fazeli, E., 2016. The effect of double impurity cluster of Ni and Co in TiO2 bulk; a DFT study. Journal of Electroceramics 37(1), 79-84. Elahifard, M.R., Ahmadvand, S., Mirzanejad, A., 2018. Effects of Ni-doping on the photo-catalytic activity of TiO2 anatase and rutile: Simulation and experiment. Materials Science in Semiconductor Processing 84, 10-16. Elahifard, M.R., Gholami, M.R., 2012. Acid blue 92 photocatalytic degradation in the presence of scavengers by two types photocatalyst. Environmental Progress & Sustainable Energy 31(3), 371-378. Elahifard, M.R., Meidanshahi, R.V. 2017. Photo-deposition of Ag metal particles on Ni-doped TiO2 for photocatalytic application. Progress in Reaction Kinetics and Mechanism 42(3), 244-250. Elahifard, M.R., Rahimnejad, S., Haghighi, S., Gholami, M.R. 2007. Apatite-coated Ag/AgBr/TiO2 visible-light photocatalyst for destruction of bacteria. Journal of the American Chemical Society 129(31), 9552-9553. Esfandfard, S. M., Elahifard, M.R., Behjatmanesh-Ardakani, R., Kargar, H., 2018. DFT study on oxygen-vacancy stability in rutile/anatase TiO2: effect of cationic substitutions. Physical Chemistry Research 6(3), 547-563. Fu, W., Yang, H., Li, M., Li, M., Yang, N., Zou, G., 2005. Anatase TiO2 nanolayer coating on cobalt ferrite nanoparticles for magnetic photocatalyst. Materials Letters 59(27), 3530-3534. Habibi-Yangjeh, A., Golzad-Nonakaran, B., 2018. Fabrication of Magnetically Recoverable Nanocomposites by Combination of Fe3O4/ZnO with AgI and Ag2CO3: Substantially Enhanced Photocatalytic Activity under Visible Light. Physical Chemistry Research 6(2), 415-431. Hwangbo, Y., Yoo, J. H., Lee, Y.I. 2017. Electrospun CoFe2O4 nanofibers as high capacity anode materials for Li-ion batteries. Journal of Nanoscience and Nanotechnology 17(10), 7632-7635. Kimiagar, S., 2013. Hydrophilicity and antibacterial properties of Ag/TiO2 nanoparticle. Physical Chemistry Research 1(2), 126-133. Li, C.J., Wang, J.N., Wang, B., Gong, J.R., Lin, Z., 2012. Direct formation of reusable TiO2/CoFe2O4 heterogeneous photocatalytic fibers via two-spinneret electrospinning. Journal of Nanoscience and Nanotechnology 12(3), 2496-2502. Li, Q., Xia, Y., Yang, C., Lv, K., Lei, M., Li, M., 2018. Building a direct Z-scheme heterojunction photocatalyst by ZnIn2S4 nanosheets and TiO2 hollowspheres for highly-efficient artificial photosynthesis. Chemical Engineering Journal, 349, 287-296. Li, Y., Feng, X., Lu, Z., Yin, H., Liu, F., Xiang, Q. 2018. Enhanced photocatalytic H2-production activity of C-dots modified g-C3N4/TiO2 nanosheets composites. Journal of Colloid and Interface Science 513, 866-876. Liang, M., Borjigin, T., Zhang, Y., Liu, B., Liu, H., Guo, H., 2019. Controlled assemble of hollow heterostructured g-C3N4@ CeO2 with rich oxygen vacancies for enhanced photocatalytic CO2 reduction. Applied Catalysis B: Environmental 243, 566-575. Liu, S.Q., 2012. Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants. Environmental Chemistry Letters 10(3), 209-216. Lykhin, A.O., Ahmadvand, S., Varganov, S.A. 2018. Electronic transitions responsible for C60+ diffuse interstellar bands. The Journal of Physical Chemistry Letters 10(1), 115-120. Ma, X., Xiang, Q., Liao, Y., Wen, T., Zhang, H., 2018. Visible-light-driven CdSe quantum dots/graphene/TiO2 nanosheets composite with excellent photocatalytic activity for E. coli disinfection and organic pollutant degradation. Applied Surface Science 457, 846-855. Mishra, D., Senapati, K. K., Borgohain, C., Perumal, A., 2012. CoFe2O4− Fe3O4 Magnetic nanocomposites as photocatalyst for the degradation of methyl orange dye. Journal of Nanotechnology 2012. Moosavi, S. M., Molla-Abbasi, P., Haji-Aghajani, Z., 2016. Photo-catalyst CoFe2O4–TiO2: application in photo-degradation of organic dyes and magnetic nanocomposite preparation. Journal of Materials Science: Materials in Electronics 27(5), 4879-4886. Padervand, M., Salari, H., Ahmadvand, S., Gholami, M.R., 2012. Removal of an organic pollutant from waste water by photocatalytic behavior of AgX/TiO2 loaded on mordenite nanocrystals. Research on Chemical Intermediates 38(8), 1975-1985. Pirhashemi, M., Habibi-Yangjeh, A., 2018. Facile fabrication of novel ZnO/CoMoO4 nanocomposites: Highly efficient visible-light-responsive photocatalysts in degradations of different contaminants. Journal of Photochemistry and Photobiology A: Chemistry 363, 31-43. Ricker, J.D., Mohammadrezaei, V., Crippen, T.J., Zell, A.M., Geary, L.M. 2018. Nitrous Oxide Promoted Pauson–Khand Cycloadditions. Organometallics 37(24), 4556-4559. Rohilla, S., 2020. Rietveld refinement and structural characterization of TiO2/CoFe2O4nanocomposites. In IOP Conference Series: Materials Science and Engineering 872(1): 012171). IOP Publishing. Salari, H., Daliri, A., Gholami, M.R., 2018. Graphitic carbon nitride/reduced graphene oxide/silver oxide nanostructures with enhanced photocatalytic activity in visible light. Physical Chemistry Research 6(4), 729-740. Sathishkumar, P., Mangalaraja, R. V., Anandan, S., Ashokkumar, M., 2013. CoFe2O4/TiO2 nanocatalysts for the photocatalytic degradation of Reactive Red 120 in aqueous solutions in the presence and absence of electron acceptors. Chemical Engineering Journal 220, 302-310. Tekmen, C., Suslu, A., Cocen, U. 2008. Titania nanofibers prepared by electrospinning. Materials Letters 62(29), 4470-4472. Xia, Y., Li, Q., Lv, K., Li, M., 2017. Heterojunction construction between TiO2 hollowsphere and ZnIn2S4 flower for photocatalysis application. Applied Surface Science 398, 81-88. | ||
آمار تعداد مشاهده مقاله: 496 تعداد دریافت فایل اصل مقاله: 220 |