تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,114,884 |
تعداد دریافت فایل اصل مقاله | 97,218,766 |
بهینه سازی تعداد چاه های نمونه برداری با رویکرد مکانیـ زمانی در شبکۀ پایش سطح آب های زیرزمینی (مطالعۀ موردی: دشت سراب) | ||
اکوهیدرولوژی | ||
مقاله 13، دوره 8، شماره 3، مهر 1400، صفحه 777-790 اصل مقاله (787.37 K) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2021.326380.1520 | ||
نویسندگان | ||
نوید هوشنگی* ؛ میررضا غفاری رزین | ||
استادیار، گروه مهندسی نقشه برداری، دانشکدۀ مهندسی علوم زمین، دانشگاه صنعتی اراک، اراک | ||
چکیده | ||
بهینه سازی چاه های نمونه برداری موجود در شبکۀ پایش آب های زیرزمینی به لحاظ کاهش هزینۀ نگهداری و بهبود کارایی و افزایش سرعت بهروزرسانی اهمیت زیادی دارد. برای تعیین چاه های بااهمیت، عموماً از روش های زمین آماری (مانند کریجینگ) و یا تحلیل مؤلفه های اصلی (PCA) استفاده می شود. در روش های زمین آماری، بهینه سازی با توجه به موقعیت مکانی نمونه ها انجام میشود و اطلاعات زمانی چاه ها لحاظ نمی شود. در روش PCA تعیین چاه های شاخص با لحاظ اطلاعات زمانی چاه های موجود در همسایگی ایستگاه های پایش انجام می شود. در این تحقیق رویکردی بر اساس تلفیق این دو روش برای در نظر گرفتن اطلاعات مکانی و زمانی چاه ها ارائه شده و از آن برای کاهش تعداد چاه های نمونه برداری در تخمین سطح آب های زیرزمینی آبخوان دشت سراب استفاده شده است. تحقیق حاضر با اخذ مشاهدات 47 چاه مربوط به سفرۀ اول دشت سراب در سال 1397 در سه مرحلۀ اصلی انجام گرفته است: 1- جستوجوی اکتشافی داده ها؛ 2- تعیین اولویت چاهها با لحاظ اطلاعات زمانی چاه های حاضر در همسایگی با روش PCA؛ 3- بررسی میزان تغییرات دقت سطح با روش کریجینگ با فرض حذف شدن چاه های با اولویت زمانی کم. نتایج نشان داد 9 چاه دشت سراب (19 درصد) دارای ارزش نسبی کمتر از 3/0 هستند که با حذف این چاه ها و ارزیابی خطای RMSE در نقاط حذفشده، مقدار این نقاط با 46 سانتیمتر خطا از طریق اطلاعات مکانی همسایه ها قابل محاسبه است. بنابراین، چاه های حذفشده اطلاعات مکانی زیادی وارد شبکه نمی کنند و با حذف آنها، میتوان با افزایش دقت اندازه گیری سطح آب در بقیۀ چاه های نمونه برداری و صرفه جویی در زمان و هزینه، به همان دقت سطح اولیه رسید. | ||
کلیدواژهها | ||
آب زیرزمینی؛ چاه های نمونه برداری؛ زمین آمار؛ تحلیل مؤلفه های اصلی؛ دشت سراب | ||
مراجع | ||
[1]. Sayadi shahraki A, naseri a, boromandnasab s, soltani a. Designing a network for monitoring groundwater level using the Principal Component Analysis technique. 2020;13(44):29-37.
[2]. Destandau F, Zaiter Y. Spatio-temporal design for a water quality monitoring network maximizing the economic value of information to optimize the detection of accidental pollution. Water Resources and Economics. 2020;32:100156.
[3]. Ou C-P, St-Hilaire A, Ouarda T, Conly FM, Armstrong N, Khalil B, et al. Coupling geostatistical approaches with PCA and fuzzy optimal model (FOM) for the integrated assessment of sampling locations of water quality monitoring networks (WQMNs). Journal of environmental monitoring : JEM. 2012;14.
[4]. Aadil N, Gallardo A, Ahmed S. Optimization of a Groundwater Monitoring Network for a Sustainable Development of the Maheshwaram Catchment, India. Sustainability. 2011;3.
[5]. Abdollahi Mansourkhani M, Mohammadzade H, Amini M, Azizi F. Assessment of Groundwater Quality Spatial Distribution and Appointment Optimize Network of Shahrkord Plain Aquifer Using Geostatistical Methods. Watershed Management Research Journal. 2019;32(2):60-78.
[6]. Taheri Zangi S, Vaezihir A. Vulnerability of Shazand Plain Subsidence Caused by Groundwater Level Reduction Using Weighting Model and Its Validation Analysis Using Radar Interferometry. Iranian journal of Ecohydrology. 2020;7(1):183-94.
[7]. Hosseini M, Kerachian R. A data fusion-based methodology for optimal redesign of groundwater monitoring networks. Journal of Hydrology. 2017;552:267-82.
[8]. Lashkaripour G, Rostami Barani H, Kohandel A, Tarshizi H. Groundwater level drop and land subsidence in Kashmar plain. 10th Iranian Geological Society Conference; Tehran2006.
[9]. Khashei A, Shahidi A, Rahnama S. Comparision of Birjand Plain Aquifer Chromium Monitoring Network Using Principal Component Analysis (PCA) and Entropy Theory. Environment and Water Engineering. 2021;7(2):220-31.
[10]. komasi m, goudarzi h. Multi-Objective Optimization Groundwater Network Using Genetic Algorithm (NSGA-II) and Empirical Bayesian Kriging (EBK) Method (Case Study: Silakhor plain). Irrigation and Water Engineering. 2021;11(3):204-20.
[11]. Shahidi A, Khashei Siouki A, Ramezani Y, Nazeri Tehrani M. Design of rain gauge monitoring network using irregularity theory (Case study: Urmia Lake Basin). Irrigation and Drainage of Iran. 2019;13(2):296-308.
[12]. Vu MT, Jardani A, Massei N, Fournier M. Reconstruction of missing groundwater level data by using Long Short-Term Memory (LSTM) deep neural network. Journal of Hydrology. 2020;597:125776.
[13]. Khodaverdi M, Hashemi sR, Khashei-Siuki A, Pourreza- Bilondi M. Optimal Design of Groundwater-Quality Sampling Networks with MOPSO-GS (Case Study: Neyshabour Plain). Water and Irrigation Management. 2020;9(2):199-210.
[14]. Wang C, Zhao L, Sun W, Xue J, Xie Y. Identifying redundant monitoring stations in an air quality monitoring network. Atmospheric Environment. 2018;190:256-68.
[15]. Seifipour K, Mirabbasi R, Mirzaei M. Application of Entropy Theory in Assessing Groundwater Quality Monitoring Network of Sefiddasht. Hydrogeology. 2020;4(2):63-73.
[16]. Sottani A, Meggiorin M, Ribeiro L, Rinaldo A. Comparison of two methods for optimizing existing groundwater monitoring networks: application to the Bacchiglione Basin, Italy2020.
[17]. Galán-Madruga D, García-Cambero JP. An optimized approach for estimating benzene in ambient air within an air quality monitoring network. Journal of Environmental Sciences. 2022;111:164-74.
[18]. Noori gheidari Mh. Determintion of Effective Wells to Monitor the Ground Water Level Using the Principal Components Analysis. JSTNAR. 2013;17(64):149-59.
[19]. Camacho J, Pérez-Villegas A, García-Teodoro P, Maciá-Fernández G. PCA-based multivariate statistical network monitoring for anomaly detection. Computers & Security. 2016;59:118-37.
[20]. Teng SY, How BS, Leong WD, Teoh JH, Siang Cheah AC, Motavasel Z, et al. Principal component analysis-aided statistical process optimisation (PASPO) for process improvement in industrial refineries. Journal of Cleaner Production. 2019;225:359-75.
[21]. Ghadban N, Honeine P, Francis C, Mourad-Chehade F, Farah J, editors. Strategies for principal component analysis in wireless sensor networks. 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM); 2014 22-25 June 2014.
[22]. Babaei Hessar S, Hamdami Q, Ghasemieh H. Identify the Effective Wells in Determination of Groundwater Depth in Urmia Plain Using Principle Component Analysis. Water and Soil. 2017;31(1):40-50.
[23]. Silva M, Santos A, Santos R, Figueiredo E, Sales C, Costa JCWA. Deep principal component analysis: An enhanced approach for structural damage identification. Structural Health Monitoring. 2018;18(5-6):1444-63.
[24]. Raeisi A, Ghafouri H-R, Moslemzadeh M. Minimization of Groundwater Observation Wells Using Geostatistics and Optimization Technique (Case study: Dezfoul-Andimeshk plain). Journal of Water and Soil Conservation. 2018;25(3):79-96.
[25]. Hooshangi N. Determination of valuable piezometric wells in groundwater level prediction by considering spatiotemporal information. GEO. 2020;13(49):37-49.
[26]. Hooshangi N, Alesheikh A, Nadiri A. Optimization of Piezometers Number for Groundwater Level Prediction Using PCA and Geostatistical Methods. Water and Soil Science. 2016;25(4/2):53-66.
[27]. Jahanbakhsh Asl S, Sari Sarraf B, Khorshid Doost AM, Rostamzadeh H. Evaluation of vegetation changes in Sarab plain and analysis of drought and wet seasons Geography 2009;23(7):118-34.
[28]. karami F, Rostamzadeh H. Investigation of effective factors in salinization of Sarab plain lands. Iranian Journal of Natural Resources. 2008;4(3).
[29]. Kaffash Charandabi N. Forecasting Air Pollution based on Monitoring Station with using Kalman Filter. New Approaches in Civil Engineering. 2019;3(3):46-60.
[30]. Preda C, Saporta G, Mbarek M. The NIPALS algorithm for missing functional data. Revue Roumaine de Mathématiques Pures et Appliquées. 2010;55.
[31]. Hooshangi N, Alesheikh AA. Evaluation OF ANN, ANFIS and FUZZY Systems in estimation of solar radiation in Iran. Journal of gematics science and technology. 2015;4(3):187-200. | ||
آمار تعداد مشاهده مقاله: 561 تعداد دریافت فایل اصل مقاله: 377 |