
تعداد نشریات | 162 |
تعداد شمارهها | 6,692 |
تعداد مقالات | 72,232 |
تعداد مشاهده مقاله | 129,190,111 |
تعداد دریافت فایل اصل مقاله | 102,021,140 |
واکاوی جزیرة گرمایی رویة زمین در شهرهای ارومیه و تبریز و ارتباط آن با وردش های پهنة آبی دریاچة ارومیه | ||
پژوهش های جغرافیای طبیعی | ||
دوره 53، شماره 3، آبان 1400، صفحه 415-430 اصل مقاله (563.33 K) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2021.326499.1007627 | ||
نویسندگان | ||
محمد دارند* 1؛ مسعود مرادی2 | ||
1استاد گروه آب و هواشناسی، دانشکدة منابع طبیعی، دانشگاه کردستان | ||
2پژوهشگر پسادکتری گروه آب و هواشناسی، دانشکدة منابع طبیعی، دانشگاه کردستان | ||
چکیده | ||
پایش مکانی و زمانی جزیرة گرمایی شهری با داده های دورسنجی رو به افزایش است و یکی از مهم ترین دلایل آن ارائة اطلاعات مکانی بیشتر از دمای شهرها نسبت به داده های زمینی است. هدف از این پژوهش واکاوی اثر نوع پوشش زمین در منطقة خارج از شهر بر جزیرة گرمایی شهری است. به این منظور، از دمای رویة زمین مودیس در چهار برداشت روزانه برای برآورد شدت جزیرة گرمایی شهرهای تبریز و ارومیه بهره گرفته شده است. به منظور بررسی اثر نوع پوشش حومة شهر بر شدت جزیرة گرمایی، گونه های غالب پوشش زمین در اطراف این دو شهر جداگانه کندوکاو شد. همچنین، بررسی وردش های زمانی گسترة دریاچة ارومیه و ارتباط آن با شدت جزیرة گرمایی از دیگر اهداف این پژوهش است. یافتهها نشان داد نوع پوشش حومه اثر چشمگیری در شدت جزیرة گرمایی و سرمایی رویه دارد. هر کدام از دو شهر مورد واکاوی با توجه به نوع و تراکم پوشش اطراف آن رفتار متفاوتی را، به ویژه در وردشهای درون سالانة جزیرة گرمایی، نشان می دهند. تغییر نوع پوشش حومه بر جزیرة گرمایی ارومیه اثر بیشتری نسبت به تبریز دارد. این شرایط در پیوند با تغییرات گسترة دریاچة ارومیه نیز در شهر ارومیه چشمگیرتر است. یافته ها همچنین گویای این است که افتوخیز بیشتر دمای رویة زمین نسبت به دمای هوا جزیرة گرمایی شدیدتری را نیز برای شهرها به دست می دهد. | ||
کلیدواژهها | ||
جزیرة گرمایی شهری؛ دریاچة ارومیه؛ دمای رویة زمین؛ مودیس | ||
مراجع | ||
رمضانی، ب. و دختمحمد، س. م. (1389). شناخت محدودة مکانی تشکیل جزیرة گرمایی در شهر رشت، مجلة پژوهش و برنامهریزی شهری، ۱(۱): ۴۹-64.
شمسیپور، ع.؛ مهدیان ماهفروزی، م.؛ اخوان، ه. و حسینپور، ز. (1391). واکاوی رفتار روزانة جزیرة گرمایی شهر تهران، مجلة محیطشناسی، ۳۸(4): ۴۵-56.
عزیزی، ق.؛ شمسیپور، ع.؛ مهدیان ماهفروزی، م. و میری، م. (1392). تأثیرپذیری شدت جزیرة گرمایی شهری تهران از الگوهای همدیدی جو، مجلة محیطشناسی، 39(4): ۵۵-66.
کارکن سیستانی، م. و دوستان، ر. (1394). جزیرۀ گرمایی کلانشهر مشهد، مجلة جغرافیا و توسعة فضای شهری، ۲(۲): ۱۲۳-138.
مجرد، ف.؛ ناصریه، م. و هاشمی، س. (1397). بررسی تغییرات دورهای و فصلی جزیرة گرمایی شهر کرمانشاه در شب و روز با استفاده از تصاویر ماهوارهای، مجلة فیزیک زمین و فضا، 44(2): ۴۷۹-494.
مسعودیان، س. ا. و ترکی، م. (1398). واکاوی تغییرات زمانی و مکانی جزیرة گرمایی کلانشهر اهواز به کمک دادههای مودیس، مجلة جغرافیا و برنامهریزی محیطی، ۳۰(73): ۷۵-92.
مسعودیان، س.ا. و منتظری، م. (1399). رفتار زمانی- مکانی جزیرة گرمایی کلانشهر اصفهان، مجلة مخاطرات محیط طبیعی، ۹(24): ۳۵-46.
مزیدی، ا. و حسینی ف. (1394). تأثیر تغییر کاربری و پوشش زمین بر جزیرة گرمایی در منطقة شهری یزد با استفاده از دادههای سنجش از دور، مجلة جغرافیا و توسعه، ۱۳(38): ۱-12.
منصوری س.؛ خالدی ش.؛ برنا ر. و اسدیان ف. (1398). اثر تغییرات کاربری و کاهش فضای سبز شهری بر تشدید جزیرة گرمایی و آلودگی شهر تهران (مطالعة موردی: منطقة یک)، جغرافیا (فصلنامة علمی- پژوهشی و بینالمللی انجمن جغرافیای ایران)، ۱۷(63): ۱۱۴-129.
Azizi, G.; Shamsipour, A.; Mahdian Mahfrouzi, M. and Miri, M. (2014). Intensities of the Urban Heat Island of Tehran under the Influence of Atmospheric Synoptic Patterns, Journal of Environmental Studies, 39(4): 55-66.
Karkon Sistani, M. and Doostan, R. (2015). Heat Island of Mashhad Metropolis, Geography and Urban Space Development, 2(3): 123-138.
Masoodian, S.A. and Torky, M. (2019). Climatology of Surface Urban Heat Island of Ahwaz Metropolis, Geography and Environmental Planning, No. 73, PP. 75-92.
Masoodian, S.A. and Montazeri, M. (2020). Tempo-spatial behavior of Surface Urban Heat Island of Isfahan Metropolitan Area, Journal of Natural Environmental Hazards, No. 24, PP. 35-46.
Mansouri, S.; Khaledi, Sh.; Borna R. and Asadian, F. (2020). Effect of Land Use Change and Urban Green Space Reduction on Intensification of Heat Island and Pollution in Tehran (Case Study: Region One), Geography, No. 63, PP. 114-129.
Mazidi, A. and Hoseini, F.S. (2015). Effects of Changing Land Use and Land Cover on the Heat Island in Urban Area of Yazd Using Remote Sensing Data, Geography and Development Iranian Journal, No. 38, PP. 1-12.
Mojarrad, F.; Naserieh, M. and Hashemi, S. (2018). Investigation of Periodic and Seasonal Variations of Urban Heat Island (UHI) at Night and Day Using Satellite Imagery in Kermanshah City, Journal of the Earth and Space Physics, 44(2): 479-494.
Ramezani, B. and Dokht Mohammad, S.M. (2010). Recognition of the spatial boundary of heat island formation in Rasht city, Journal of Research and Urban Planning, No. 1, pp. 49-64.
Shamsipour, A.; Mahdian Mahfrouzi, M.; Akhavan, H. and Hoseinpour, Z. (2013). An Analysis on Diurnal Actions of the Urban Heat Island of Tehran, Journal of Environmental Studies, 38(4): 45-56.
Chen, M.; Zhou, Y.; Hu, M. and Zhou, Y. (2020). Influence of Urban Scale and Urban Expansion on the Urban Heat Island Effect in Metropolitan Areas: Case Study of Beijing–Tianjin–Hebei Urban Agglomeration, Remote Sensing, No. 12, PP. 1-19.
Cosgrove, A. and Berkelhammer, M. (2018). Downwind footprint of an urban heat island on air and lake temperatures, Climate and Atmospheric Sciences, Climate and Atmospheric Science, No. 2, PP. 1-10.
Dewan, A.; Kiselev, G.; Botje, D.; Iftekhar Mahmud, G.; Bhuian, M.H. and Hassan, Q.K. (2021). Surface urban heat island intensity in five major cities of Bangladesh: Patterns, drivers and trends. Sustainable Cities and Society, No. 71, PP. 1-12.
Friedl, M. and Sulla-Menashe, D. (2019). MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC, Sioux Falls, South Dakota.
Gallo, K.P. and Owen, K.W. (1999). Satellite-Based Adjustments for the Urban Heat Island Temperature Bias. Journal of Applied Meteorology, No. 38, PP. 806-813.
Kataoka K.; Matsumoto F.; Ichinose T. ans Taniguchi M. (2009). Urban warming trends in several large Asian cities over the last 100 years, Science of the total environment, No. 407, PP. 3112-3119.
Khandelwal, A.; Karpatne, A.; Marlier, M.; Kim, J.; Lettenmaier, D.P. and Kumar, V. (2017). An approach for global monitoring of surface water extent variations in reservoirs using MODIS data, Remote Sensing of Environment, No. 202, PP. 113-128.
Li, K.; Chen, Y.; Wang, M. and Gong, A. (2019). Spatial-temporal variations of surface urban heat island intensity induced by different definitions of rural extents in China, Science of the Total Environment, No. 669, PP. 229-247
Li, L.; Chen, Zha, Y. and Zhang, J. (2020). Spatially non-stationary effect of underlying driving factors on surface urban heat islands in global major cities, International Journal of Applied Earth Observation and Geoinformation, No. 90, PP. 1-12.
Mathew, A.; Sreekumar, S.; Khandelwal, S. and Kumar, R. (2019). Prediction of land surface temperatures for surface urban heat island assessment over Chandigarh city using support vector regression model, Solar Energy, No. 186, PP. 404-415.
Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L. and Munafò, M. (2021). Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Science of the Total Environment, No. 751, PP. 1-19.
Oke, T.R. (1982). The energetic basis of the urban heat island. Quarterly Journal of Royal Meteorological Society, No. 108, PP. 1-24.
Palou, F.S. and Mahalov, A. (2019). Summer- and Wintertime Variations of the Surface and Near-Surface Urban Heat Island in a Semiarid Environment. Weather and Forecasting, No. 34, PP. 1849-1865.
Rizwan, A.M.; Dennis, L.Y.C. and Liu, C. (2008). A review on the generation, determination and mitigation of Urban Heat Island, Journal of Environmental Sciences, 20(1): 120-128.
Sekertekin, A. and Zadbagher, E. (2021). Simulation of future land surface temperature distribution and evaluating surface urban heat island based on impervious surface area, Ecological Indicators, No. 122, PP. 1-11.
Song, Y. and Wu, C. (2016). Examining the impact of urban biophysical composition and neighboring environment on surface urban heat island effect, Advances in Space Research, No. 57, PP. 96-109.
Strahler, A.; Muchoney, D.; Borak, J.; Friedl, M.; Gopal, S.; Lambin, E. and Moody, A. (1999). MODIS Land Cover Product Algorithm Theoretical Basis Document (ATBD). Boston University, Boston.
Tepanosyan, G.; Muradyan, V.; Hovsepyan, A.; Pinigin, G.; Medvedev, A. and Asmaryan, S. (2021). Studying spatial-temporal changes and relationship of Land Cover and Surface Urban Heat Island derived through remote sensing in Yerevan, Armenia. Building and Environment, No. 187, PP. 107390.
Voogt, J.A. and Oke, T.R. (2003). Thermal remote sensing of urban climates. Remote Sensing of Environment, No. 86, PP. 370-384.
Wan, Z. (1999). MODIS Land-Surface Temperature Algorithm Theoretical Basis Document, University of California, Santa Barbara.
Wan, Z. (2013). Collection-6 MODIS Land Surface Temperature products users’ guide, ERI. University of California, Santa Barbara.
Wang, Z.; Meng, Q.; Allam, M.; Hu, D.; Zhang, L. and Menenti, M. (2021). Environmental and anthropogenic drivers of surface urban heat island intensity: A case-study in the Yangtze River Delta, China. Ecological Indicators, No. 128, PP. 1-14.
Yang B.; Meng F.; Xinli, K. and Ma C. (2015). The Impact Analysis of Water Body Landscape Pattern on Urban Heat Island: A Case Study of Wuhan City, Advances in Meteorology, No. 2015 (ID:416728), PP. 1-7.
Yao, R.; Wang, L.; Huang, X.; Niu, Y.; Chen, Y. and Niu, Z. (2018). The influence of different data and method on estimating the surface urban heat island intensity, Ecological Indicators, No. 89, PP. 45-55.
Zhou, B.; Lauwaet, D.; Hooyberghs, H.; Ridder, KD.; Kropp, JP. and Rybski, D. (2016). Assessing Seasonality in the Surface Urban Heat Island of London. Journal of Applied Meteorology and Climatology, No. 55, PP. 493-505. | ||
آمار تعداد مشاهده مقاله: 655 تعداد دریافت فایل اصل مقاله: 374 |